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We begin with a traditional derivation of the Dirac Equation, and proceed to study and motivate
it from an algebraic perspective using the representations of the Lorentz Algebra. We close by
describing possible ways to extend the Dirac Equation to higher spins.

I. A TRADITIONAL DERIVATION OF THE
DIRAC EQUATION

A. Factoring the Relativistic Hamiltonian [1]

In the non-relativistic case, we have the Schrödinger
Equation for a free particle [1]

Theorem I.1 (Nonrelativistic Schrödinger Equa-
tion).

i~
∂ |ψ〉
∂t

=
P 2

2m
|ψ〉 (1)

In the relativistic case, we can use the relativistic free
particle Hamiltonian [11].

H = (c2P 2 +m2c4)
1
2 (2)

and thus, try to solve the relativistic free-particle
Schrödinger Equation

i~
∂ |ψ〉
∂t

= (c2P 2 +m2c4)
1
2 |ψ〉 (3)

It isn’t obvious how to solve this, but as is often the
case, we begin by making a leap of faith. Suppose that
the expression inside the square root can be written as
a perfect square [12]. Then, we assume that this square
root is of the form

c2P 2 +m2c4 = (cαxPx + cαyPy + cαzPz + βmc2)2 (4)

= (cα ·P + βmc2)2 (5)

We can match both sides of the equation (omitting
computation) to yield the following relations on α and β

α2
i = β2 = 1 (6)

{αi, αj} = 0 (7)

{αi, β} = 0 (8)

where {·, ·} represents the anticommutator. Clearly α
and β aren’t numbers. They must be Hermitian, trace-
less, and have eigenvalues ±1. We require that none of
the matrices are equal because the anticommutator of

a nonzero matrix with itself cannot be 0. The smallest
matrices that work are 4x4 matrices. One such set is

α =

[
0 σ
σ 0

]
, β =

[
I 0
0 −I

]
(9)

which are referred to as the Gamma matrices. This
gives us the Dirac Equation.

Theorem I.2 (Dirac Equation).

i~
∂ |ψ〉
∂t

= (cα ·P + βmc2) |ψ〉 (10)

where α and β are as above.

B. Time-Space Symmetry [1]

We can rewrite the Dirac Equation by using the four-
gradient.

i~
∂ |ψ〉
∂t

= (cα ·P + βmc2) |ψ〉 (11)

=⇒ ic~∂0 |ψ〉 =
∑

j=1,2,3

−ic~αj · ∂i + βmc2 |ψ〉 (12)

=⇒ i~αµ∂µ |ψ〉 −mc |ψ〉 = 0 (13)

where in the second equation we used ∂0 = 1
c∂t

We can now see that the Dirac Equation is symmetric
in time and space, first order in both, a desirable property
for a relativistic quantum equation.

C. The Dirac Equation Describes Spin- 1
2

Particles
[2]

The next step is figuring out what sort of states this
equation describes. Define the Dirac Hamiltonian as

HD = cα ·P + βmc2 (14)

In order to better understand HD, we search for op-
erators that commute with HD, as these correspond to
time-conserved properties of the state.

Proposition I.1. The total angular momentum L + S
commutes with the Dirac Hamiltonian HD if we use spin-
1
2 operators.



The Dirac Equation 2

Proof. For starters, let’s look at the orbital angular mo-
mentum L. For the sake of making computation easier,
we choose units such that c = ~ = 1 and use the Einstein
convention. Noting that β = I,

[Lj , HD] = [Lj , α ·P] (15)

= [εjklrkpl, aipi] (16)

= ai[εjklrkpl, pi] (17)

(18)

Now, because [ri, pj ] = iδij , we have

αi[εjklrkpl, pi] = αiεjkl(rkplpi − pirkpl) (19)

= αiεjkl(iδikpl + pirkpl − pirkpl) (20)

= αiεjilpl (21)

=⇒ [Lj , HD] = εjilαipl (22)

We’re a little disheartened, because this means that
orbital angular momentum is not conserved here, but we
proceed onwards, and check commutatitivity with the
spin operators S. Using the marvelous power of hind-
sight, we elect to try spin- 12 operators first.

However, it isn’t clear how to construct spin- 12 opera-
tors that operate on four-dimensional space.

Lemma I.1. The operators

Si =

[
σi 0
0 σi

]
(23)

are spin- 12 operatorso that operate on four-dimensional
space, where each entry of the above matrix is 2x2 and
σi are Paulli matrices.

Proof. Any such triple of operators {Si} must satisfy

[Si, Sj ] = iSk (24)

and

S2 = S2
x + S2

x + S2
z = l(l + 1) =

3

4
(25)

We know that the operators 1
2σi satisfy these condi-

tions over a 2-dimensional space. Thus, by matrix block
multiplications, the matrices

Si =

[
σi 0
0 σi

]
(26)

satisfy the above relations as well, but operate over
four-dimensional space.

Now, we can check the commutator with the Hamilto-
nian. Noticing that we can pull the pi out

[Sj , HD] = [Sj , αipi] +m[Sj , I] (27)

= pi[Sj , αi] (28)

= piεjikαk (29)

= εjilαipl (30)

=⇒ [Sj , HD] + [Lj , HD] = [Lj + Sj , HD] = 0 (31)

And thus, the total angular momentum L + S is con-
served, so the Dirac Equation does indeed describe spin- 12
particles, as desired.

II. PRELIMINARIES

The above derivation was short, but it was not partic-
ularly motivated. In particular, the system of constraints
(equations 6-8) that we solved do not relate to relativity
in any obvious way. In order to provide some more phys-
ical intuition for what’s going on, we’ll show that the
Dirac Equation and the four-component representation
for an electron is a result of Lorentz Symmetry. We’ll de-
velop some mathematical machinery along the way. For
readers who’ve seen some algebra before, please excuse
the lack of rigor in some of the definitions and derivations
presented.

A. Lorentz Transformations

In nonrelativistic mechanics, we require that the laws
of physics be invariant under Galilean Transformations,
which preserve the Euclidean norm

x2 + y2 + z2 (32)

Analogously, in relativistic mechanics, we require that
the laws of physics be invariant under Poincaré trans-
formations, which are continuous transformations char-
acterized by their preservation of the Minkowski norm

(ict)2 + x2 + y2 + z2 = −c2t2 + x2 + y2 + z2 (33)

For the purposes of this paper, we’ll restrict our at-
tention to Lorentz Transformations, which are are
Poincaré transformations that are not translations. [13]

Lorentz transformations come in two types - rotations
and boosts, which are (rather unhelpfully) defined as
Lorentz transformations that are not rotations. Our task
is now to understand Lorentz Transformations more for-
mally.
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B. A Crash Course in Representation Theory [3]

Definition II.1. A group G is a (possibly infinite) set
of elements and a rule for multiplying elements that takes
two elements g1, g2 ∈ G and outputs g3 ∈ G. In addition,
there’s an identity element e, and every element has an
inverse such that gg−1 = e.

The set of rotations in three-dimensions is a group,
because we can compose any two rotations to create a
third (this isn’t obvious but it’s true). Lorentz trans-
formations also form a group, as we can compose any
two norm-preserving transformations to create a third.
In physics, we often care about matrix groups, where
group elements are invertible matrices and multiplication
is the usual matrix multiplication.

Definition II.2. A group representation is a map R
from group elements to matrices such that if g1g2 = g3
then R(g1)R(g2) = R(g).

Intuitively, we assign a matrix to every group element
such that the matrices satisfy the same multiplication ta-
ble as the group elements themselves. Of course, all the
matrices are square (invertible) and act on the same vec-
tor space (otherwise they couldn’t be multiplied). The
dimension of a representation is the dimension of the vec-
tor space on which it acts. Another way to think about
this is that we map a group to a matrix group.

As an example, consider the group of rotations. We al-
ways have the trivial representation which takes every
element in the group to 1. In addition, we have the group
of three-dimensional rotation matrices, which by defini-
tion satisfy the same multiplication table as the group of
rotations and thus form a three-dimensional representa-
tion of the rotation group. The rotation matrices are the
orthogonal matrices with determinant 1, and this matrix
group is called SO(3), the special orthogonal group [14]

Similarly, the Lorentz group, which is the same group
extended by one more dimension, can be represented by
the matrix group SO(3, 1), where (3, 1) comes from the
sign change in the Minkowski norm. To be precise, these
are matrices Λ such that

ΛηΛ† = I (34)

where

η =

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (35)

Given two representations R1 : G → V and R2 : G →
W , we can write a third representation R3 where

R3(g) =

[
R1(g) 0

0 R2(g)

]
(36)

Thus, the matrices in R3 are block diagonal, and thus
satisfy the requisite multiplication laws because R1 and
R2 do.

Definition II.3. A representation is reducible if there
exists a basis in which every matrix of the representation
is block diagonal with the same block sizes, and irre-
ducible if no such basis exists. [15]

If the set of irreducible representations of a group
are known, then all possible representations can be con-
structed by the process we described above [16].

C. Lies, Damn Lies [4]

Definition II.4. A Lie Group is a group that is also
a smooth manifold. For our purposes, it’s sufficient to
say that most matrix groups are Lie Groups [17], and in
particular, both SO(3) and SO(3, 1) are Lie Groups.

Frequently, we can study Lie Groups by studying the
corresponding Lie Algebra. We’ll restrict ourselves to
the study of matrix lie algebras.

Definition II.5. The Lie Algebra g of a matrix group
G is the set of all matrices X such that eitX ∈ G∀t ∈ R,
together with a Lie Bracket, a bracket operation [·, ·] :
g× g→ g with the following properties

• [·, ·] is anti-symmetric, so

[X,Y ] = −[Y,X]∀X,Y ∈ g (37)

• [·, ·] is bilinear, so for all a, b ∈ C and X,Y, Z ∈ g,

[aX + bY, Z] = a[X,Z] + b[Y,Z] (38)

[X, aY + bZ] = a[X,Y ] + b[X,Z] (39)

• [·, ·] satisfies the Jacobi Identity

[X, [Y, Z] + [Y, [Z,X] + [Z, [X,Y ]] = 0∀X,Y, Z ∈ g (40)

The elements of the Lie algebra are said to be genera-
tors for the corresponding Lie group. For a matrix lie
algebra, the bracket is the commutator, which we can
check has all the properties of the Lie Bracket.

For the Lie Group of rotations SO3, we write the Lie
algebra so(3). As we’ve seen, the Pauli matrices form a
basis for this Lie Algebra, with the correspondence

R(n̂, α) = e−
iα(σ·n̂)

2 (41)

The Pauli Matrices also satisfy the appropriate bracket
relations using the commutator.

We will also mention briefly a useful result from linear
algebra.
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Proposition II.1. For any complex matrix X,

etrace(X) = det eX (42)

Proof. Consider the eigenvalues and eigenvectors of X.
Because the matrix exponenetial is just a power series,
any eigenvector of X is also an eigenvector of eX . Fur-
thermore, if Xv = λv, then,

eXv = (
∑ Xn

n!
)v =

∑ λn

n!
v = (

∑ λn

n!
)v = eλv (43)

Then, remembering that the trace is the sum of the eigen-
values and that the determinant is the product of the
eigenvalues,

etrace(X) = e
∑
i λi =

∏
i

eλi (44)

and we’re done.

D. Clifford Algebras

For our purposes, a Clifford Algebra is a set of four
matrices γ satisfying the constraints in Equations 6-8.
We can write these constraints more concisely.

Definition II.6. A Clifford Algebra is a set of four ma-
trices γ satisfying

{γµ, γν} = 2ηµ,ν (45)

where µ, ν ∈ 0, 1, 2, 3 and ηµ,ν refers to the µ, ν entry.

Our ultimate goal is to understand the connection be-
tween Clifford Algebras, which arise naturally by taking
the square root of the relativistic Hamiltonian (Equation
2) and Lorentz symmetries.

III. PUTTING IT ALL TOGETHER [5] [6]

A. Generators of the Lorentz Algebra

We are interested in studying SO(3, 1). In particular,
we’d like to study its matrix representations. As is often
the case when studying representations of Lie Groups, it
is frequently easier to study the representations of the
underlying Lie Algebra, because we can then obtain a
representation of the Lie Group simply by exponentiat-
ing. This is to say, we’d like to find matrices that when
exponentiated, can generate arbitrary Lorentz transfor-
mations.

One such representation, and perhaps the simplest, is
the vector representation. The proof of how this rep-
resentation is derived is left as a footnote [18]

We index the six generators as Vµν where µ, ν ∈
{0, 1, 2}. The utility of this will become clear in a mo-
ment.

V12 =

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

V13 =

0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0



V23 =

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

V01 =

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 (46)

V02 =

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

V03 =

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


Now, let the three antisymmetric matrices be Ji, and

the three symmetric matrices be Ki. Then, we can check
that

[Ji, Jj ] = iεijkJk (47)

[Ki,Kj ] = iεijkKk (48)

(49)

Exponentiating the Ji shows that they correspond to
3D rotations. For example,

eJ0 =

0 0 0 0
0 cos(1) − sin(1) 0
0 sin(1) cos(1) 0
0 0 0 0

 (50)

The other three generators correspond to boosts, and
also satisfy a nice commutation relation. It turns out
that these commutation relations must hold for any rep-
resentation of the Lie Algebra [19] .

We can condense the commutation relations into a sin-
gle expression below, where each J·· is a matrix and η··
is an entry of η.

Proposition III.1 (Lie Bracket of Lorentz Alge-
bra).

[Vµν , Vρσ] = i(ηνρVµρ − ηµρVνσ − ηνσVµρ + ηµσVνρ (51)

In conclusion, we’ve shown that for any matrix rep-
resentation of the Lie Algebra, there must be a way to
assign indices to the matrices such that the above com-
mutation relation holds.

B. Clifford Algebras and Lorentz Algebras

We will now show a relationship between Clifford Al-
gebras and representations of the Lorentz Group.
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Consider the matrices

Sµ,ν =
i

4
[γµ, γν ] (52)

We claim that the matrices Sµν form a representation
of the Lorentz Lie Algebra, which is to say that they
satisfy the commutation relations in Equation 44.

Lemma III.1.

[Sµν , γρ] = γµηνρ − γνηρµ (53)

Proof.

[Sµν , γρ] =
1

2
[γµγν , γρ] (54)

=
1

2
γµγνγρ −

1

2
γργµγν (55)

=
1

2
γµ{γν , γρ} −

1

2
γµγργν −

1

2
{γρ, γµ}γν +

1

2
γµγργν

(56)

= γµηνρ − γνηρµ (57)

Proposition III.2. The matrices Sµν form a represen-
tation for the Lorentz Lie Algebra, so

[Sµν , Sρσ] = ηνρSµσ − ηµρSνσ + ηµσSνρ − ηνσSµρ (58)

Proof. Let’s take ρ 6= σ. Then, using our earlier Lemma,

[Sµν , Sρσ] =
1

2
[Sµν , γργsigma] (59)

=
1

2
[Sµν , γρ]γσ +

1

2
γρ[Sµν , γσ (60)

=
1

2
γµγσηνρ −

1

2
γνγσηρµ +

1

2
γργµηνσ (61)

We have by definition that

γµγσ = 2Sµσ + ηµσ (62)

and plugging this in yields the desired expression.
The matrices in Equation 9 yield the following matri-

ces. We can check that they satisfy the commutation
relation from Equation 48.

S12 =

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

S13 =

 0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0



S23 =

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

S01 =

 0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

 (63)

S02 =

0 −1 1 0
1 0 0 0
0 0 0 1
0 0 1 0

S03 =

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


We’ve found a representation of the Lorentz Lie Alge-

bra that we know corresponds in some way to spin- 12 , but
we’d like to understand this more formally.

C. Representations of the Lorentz Group

Let’s study the representations of the Lorentz Alge-
bra. Remember that the Ji generate rotations and the
Ki generate boosts. Now, take the linear combinations

J+
i =

1

2
(Ji + iKi) (64)

J−i =
1

2
(Ji − iKi) (65)

(66)

These satisfy the commutation relations

[J+
i , J

+
j ] = iεijkJ

+
k (67)

[J−i , J
−
j ] = iεijkJ

−
k (68)

[J+
i , J

−
j ] = 0 (69)

Thus, choosing these combinations gives us two com-
muting subgroups of the Lorentz algebra, each of which
is isomorphic to so(3). Commuting subgroups are intu-
itively nice because they behave ”independently”. More
formally, if X,Y ∈ so(3) commute,a

Lemma III.2.

[X,Y ] = 0, X, Y ∈ so(3) =⇒ eXeY (70)

Proof. Write out the power series and watch things can-
cel.

Proposition III.3.

so(3, 1) = so(3)× so3 (71)

Proof. The J+
i and J−i each form subgroups of the Lie Al-

gebra that commute with each other (per Equation 66).
The lemma thus tells us transforming first by a a trans-
formation from J+

i and then by a transformation from
J−i (or vice-versa - the order is irrelevant) is the same as
doing both at once. We know that any transformation
is a combination of a boost and a rotation, and we now
know that we can specify the two independently (this is
not obvious, and it isn’t generally true).

Thus, we can describe representations of so(3, 1) by
specifying two representations of so(3) and ”gluing” the
corresponding vector spaces together[20].

As we know, the representations of so(3) are Pauli ma-
trices, and in particular we can specify any representation
by an integer j. Thus, by specifying two numbers A and
B, one for each of the subgroups, we get a representation.
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D. The Weyl Representation

Let’s look at irreducible representations of the Lorentz
algebra containing spin- 12 . As it turns out, there are

two: 1
2 : ( 1

2 , 0) and (0, 12 ). Their structure is in fact quite

simple. In ( 1
2 , 0),

J+
i =

σi
2

(72)

J−i = 0 (73)

wich works because we know the Paulli matrices satisfy
the requisite commutator relations. Similarly, (0, 12 ) is
given by

J+
i = 0 (74)

J−i =
σi
2

(75)

We know that the Ji is a spin- 12 representation by
Equation 24.

Thus, for the actual rotation and boost generators, we
can say

(
1

2
, 0)|Ji =

σi
2
,Ki = −iσi

2
(76)

(0,
1

2
)|Ji =

σi
2
,Ki = i

σi
2

(77)

(78)

It’s clear that these are both representations of the
Lorentz Group. Now, let’s take their direct sum (see
Equation 35), which we write as ( 1

2 , 0) ⊕ (0, 12 ). This
gives us the matrix representation

S12 =

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

S13 =

 0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0



S23 =

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

S01 =

 0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

 (79)

S02 =

0 −1 1 0
1 0 0 0
0 0 0 1
0 0 1 0

S03 =

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


and these are the same matrices as we found in Equa-

tion 60!

E. What this all means

The Dirac Equation, which is traditionally derived by
starting with the square root of the relativisitc Hamilto-
nian, requires finding a Clifford Algebra representation.

We’ve shown that every Clifford Algebra representation
can be used to construct a representation of the Lorentz
Algebra. In particular, the canonical 4x4 representation
corresponds to the ( 1

2 , 0) ⊕ (0, 12 ) representation of the
Lorentz Group.

IV. EXTENSIONS

At this point, it seems as if we are done. We’ve found
an extremely powerful equation relating special relativity
and quantum mechanics for a spin- 12 particle, and seem
to understand it fairly well. By approaching its deriva-
tion and structure from an algebraic perspective, we un-
derstand the nature of the solutions and the particular
representation of the Lorentz group that yield the Dirac
Equation.

Now, we’ll briefly look at an extensions that we can
make, based on the groundwork that we’ve laid. As a
caveat, some of the work below is my own, and is likely
to have errors. Any comments on them would be appre-
ciated.

A. Higher-Order Clifford Representations [10]

We can immediately take the direct sum of the gamma
matrices of equation 9 to get a set of 8x8 matrices that
also satisfy the Clifford Algebra relations [21].

αi =

 0 σi 0 0
σi 0 0 0
0 0 0 σi
0 0 σi 0

β =

I 0 0 0
0 −I 0 0
0 0 I 0
0 0 0 −I

 (80)

In fact we can do this to get representation of di-
mension 4k for any k [22]. It isn’t clear, however, that
these representations correspond to Lorentz representa-
tions. For example, we might think that the 8x8 gamma
matrices apply to spin- 32 particles, using the spin opera-
tors

Si =

[
σi 0
0 σi

]
(81)

where the spin operators are

σ1 =


0
√

3 0 0√
3 0 2 0

0 2 0
√

3

0 0
√

3 0

 (82)

σ2 =


0 −i

√
3 0 0

i
√

3 0 −2i 0

0 2i 0 −i
√

3

0 0 i
√

3 0

 (83)



The Dirac Equation 7

σ3 =

3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

 (84)

If this worked, we could get a Dirac-like equation for
spin- 32 particles by following an approach as in section 1.
However, this fails when we try to show that the Hamil-
tonian based on the 8x8 gamma matrices commutes with
spin- 32 angular momentum, as the commutator with L is

the same as in Equation 22 but the commutator with S
doesn’t have a nice form.

However, now that we’re armed with algebraic tools,
we can try a more sophisticated approach. We can find
the representation of the Lorentz algebra that corre-
sponds to these gamma matrices, as per Equation 49.
We know that one must exist per Lemma III.2. How-
ever, as I’m both out of space and out of time, I’ll leave
this avenue unexplored [23]
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in some nice way

[14] The word ”special” corresponds to the determinant 1
condition. We know that the determinant must be ±1 be-
cause it’s orthogonal. The 3D orthogonal matrices with
determinant −1 correspond to reflections, which aren’t
relevant here

[15] There’s complications in the theory of infinite-
dimensional representations, but we’ll restrict ourself to
the finite-dimensional case

[16] To formalize this notion, at least for finite groups

and finite-dimensional representations, we use Maschke’s
Theorem. I’m not sure what the formalism is for infinite
groups

[17] Any closed subgroup of GLn(C) is a Lie Group
[18] First, we show that the dimension of the Lie Algebra (the

number of generators) is 6. This proof will assume general
familiarity with algebra. We’ll use the following lemma.
It isn’t hard to prove - for a proof, see an introductory
text in algebra, like Artin.

X∗ = −X ⇐⇒ (eX)†eX = I

Now for proving the actual result. First, note that ma-
trices in SO(3, 1) are unitary with respect to some inner
product (the one where the matrix of the form is η) and
thus any exponential generators must be skew-Hermitian
with respect to this form per our Lemma. Then, in any
four-dimensional matrix representation of the generators,
because we are looking for trace 0 skew-Hermitian ma-
trix, we can count the number of degrees of freedom.
Remember that all the entries in our generator are real.
Then, the skew-Hermitian condition becomes an anti-
symmetry condition, so Xij = −Xji and therefore el-
ements along the diagonal are 0. Then, the remaining
degrees of freedom come from half of the remaining ele-
ments, of which there are 6. The explicit construction of
the matrices is then basically just assigning one genera-
tor per entry, but signs get switched around because of
the −1 in the Minkowski metric.

[19] It isn’t hard to see that at least these commutation re-
lations must hold in any other matrix representation. I
think it’s harder to show that there aren’t other rela-
tions that must also hold. I think this corresponds to the
faithfulness of this representation, which probably isn’t
too hard to work out, but I won’t show it here.

[20] Formally, we can take the direct sum of two representa-
tions of so(3) to get a representation of so(3, 1), and in
finite dimensions a direct sum is the same as a product

[21] because we can operate on block diagonal matrices by
operating on each block individually, and each block sat-
isfies the relations

[22] We won’t prove this, but I think it’s actually the case
that the only satisfying representations are of dimension
4k. I don’t understand the subtleties and caveats of this
well enough to explain this, but I’m pretty sure it’s true

[23] I have discovered a truly marvelous proof of this, which
this paper is too short to contain :)


