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Abstract

We discuss the applications of profinite groups to the Galois theory of infinite field
extensions. We begin by defining profinite groups and characterizing their topological
properties, and then show that every Galois group is a profinite group. Then, after
introducing the group cohomology of profinite groups, we show how it can be coupled
with Galois theory to prove the main theorem of Kummer theory.

1 Introduction
Profinite groups are groups whose structure is determined by continuous homomor-
phisms into finite groups. As such, they are in some sense the infinite groups which are
easiest to study using the tools of finite group theory. As it turns out, many notions
from finite group theory have natural generalizations in the theory of profinite groups,
including the Sylow theorems, the existence of Frattini and Hall subgroups, and group
cohomology. Profinite groups are also topological groups, and can be defined purely
topologically.

1.1 Infinite Galois Theory
The study of profinite groups was initially motivated by Galois theory [RZ10]. In
the finite case, the main theorem of Galois theory gives us a correspondence between
subgroups of the Galois group of a finite Galois extension and its intermediate field
extensions. However, this breaks down completely when the extension is infinite - in
general, the Galois group has far more subgroups than there are intermediate field
extensions. The following results, which we will prove in Section 3, demonstrate that
imposing a particular topological condition on the subgroups of the Galois group lets
us recover the Galois correspondence.

Theorem 1 ([RZ10] Theorem 2.11.1). Let K/F be a Galois extension with Galois
group G := Gal(K/F ), and define K := {Ki|i ∈ I} as the collection of finite Galois
extensions Ki/F such that F ⊆ Ki ⊆ K. Then G endowed with the Krull topology is a
profinite group and

Gal(K/F ) = lim←−
i∈I

Gal(Ki/F ).

Furthermore, the Krull topology on Gal(K/F ) agrees with the relative subspace topol-
ogy on the inverse limit, if each finite quotient is endowed with the discrete topology.
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Theorem 2 ([RZ10] Theorem 2.11.3). Let K/F be a Galois extension with Galois group
G := Gal(K/F ), F(K/F ) be the set of intermediate fields F ⊂ L ⊂ K, and S(G) be the
set of closed subgroups of G. There is an inclusion-reversing bijection between the closed
subgroups of G under the Krull topology and intermediate field extensions of K/F . The
bijections are as follows:

φ : F(K/F ) → S(G)
L 7→ Gal(K/L).

Its inverse is

ψ : S(G) → F(K/F )
H 7→ KH

where KH denotes the fixed subfield of K under H.

We might also ask if every profinite group can be realized as a Galois group of some
Galois extension. As we will show, this is in fact true.

Theorem 3 ([RZ10] Theorem 2.11.5). If G is a profinite group, then there exists a field
F and Galois extension K/F such that Gal(K/F ) = G.

1.2 Galois Cohomology and Kummer Theory
The cohomology of Galois groups has been an extremely fruitful area of study, with
applications in algebraic number theory ranging from the proof of the Mordell-Weil
theorem to the Langlands program. In Section 4, we will introduce the cohomology of
profinite groups and show that we can treat them almost identically to finite groups.
In Section 5, we will use Galois cohomology to prove the following theorem.

Theorem 4 ([Ser97] Chapter II §1). Suppose that

• G is a profinite group.

• A is a G-module with trivial G-action.

• π is a surjective homomorphism of B with kernel A.

• B is a G-module.

• H1(G,B) = 0.

Then,
Hom(G,A) ' BG/π(BG)

where Hom(G,A) denotes the set of continuous homomorphisms from G to A.

If we choose the groups A and G and the endomorphism π appropriately, then The-
orem 4 yields the following result, the main theorem of Kummer theory, as a corollary.

Theorem 5 ([CF10] Chapter III §2). If k is a field containing n distinct roots of unity,
a finite abelian extension of k of exponent dividing n can be obtained by adjoining nth

roots of elements of k.
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2 Preliminaries

2.1 Profinite Groups
Definition 6. A directed poset I is a poset satisfying the usual conditions on the
partial order (reflexivity, antisymmetry, and transitivity) along with the additional
condition that if i, j ∈ I, then there exists a k such that i, j ≤ k.

Definition 7. Let I be a directed poset. An inverse system of groups is a collection
of groups (Gi : i ∈ I) indexed by I equipped with homomorphisms φij : Gj → Gi
whenever i ≤ j and such that φii is the identity and the following diagram commutes
when i ≤ j ≤ k

Gk Gi

Gj

φki

φkj φji

An inverse system is called surjective if all defined φij are surjective.

Definition 8. The inverse limit of an inverse system of groups (Gi) is defined as{
(gi)i∈I ∈

∏
i∈I

Gi|gi = φij(gj) if i ≤ j

}
.

In words, an element of the product group is contained in the inverse limit if it is
consistent with all the group homomorphisms.

Definition 9. A profinite group is the inverse limit of a surjective inverse system of
finite groups.

Example 10. Take the collection of groups {Z/piZ}, with homomorphisms φij : Z/pjZ→
Z/piZ whenever i ≤ j. This defines an inverse system. Then,

Zp := lim←−
n

Z/pnZ

is one way to define the p-adic integers.

There is a natural topology on profinite groups. Given the inverse system corre-
sponding to a profinite group, we can equip each finite group in the inverse system with
the discrete topology1, and consider the product topology on the product of the finite
groups in the system. Then, we can take the subspace topology, viewing the inverse
limit as a subset of the product. We can take this one step further, tying together the
topological and inverse limit definitions of a profinite group.

Proposition 11 ([RZ10] Theorem 2.1.3). Let G be a topological group. Then, the
following are equivalent:

• G is a profinite group.

1In the discrete topology, every element is an open set.
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• G is compact, Hausdorff, totally disconnected.

• G is compact and there is a local base U of open neighborhoods U about 1 such
that each U is an open normal subgroup of G and⋂

U∈U
U = 1.

• 1 admits a local base U of open neighborhoods U about 1 such that each U is a
normal subgroup of G with finite index and

G = lim←−
U∈U

G/U.

2.2 Finite Galois Theory
We will briefly state some definitions and results from finite Galois theory, and refer
the reader to [Art11] for a more thorough introduction.

Definition 12. The Galois group of a field extension K/F , denoted Gal(K/F ), is
the group of automorphisms of K fixing F .

Definition 13. An extension is a Galois extension if it is algebraic, normal, and
separable.

The following theorem lets us characterize finite Galois extensions using finite group
theory.

Theorem 14 ([Art11] Theorem 16.7.1). Let K/F be a finite Galois extension and
G := Gal(K/F ) its Galois group. Then, there is a bijective correspondence between
subgroups H ⊆ G and intermediate field extensions L/F .

Example 15. Consider the extension K = Q(
√

2,
√

3). Then, Gal(K/Q) ' (Z/2Z)2.
The two copies of Z/2Z correspond to the subextensions Q(

√
2) and Q(

√
3).

Unfortunately, Theorem 14 does not work when K/F is infinite. In general, the
number of subgroups can be much larger than the number of intermediate field exten-
sions.

Example 16 ([Sut18] Problem 4). The algebraic closure of Fq, denoted Fq, is an
infinite extension of Fq. The set of intermediate field extensions of Fq/Fq has the same
cardinality as R, whereas the set of subgroups of Gal(Fq/Fq) has the same cardinality
as 2R.

3 Infinite Galois Theory
Our main goal in this section will be the proof of Theorems 1, 2, and 3.

Proposition 17 ([RZ10] §2.11). Let G := Gal(K/F ) be the Galois group of some
extension K/F , and define K := {Ki|i ∈ I} as the collection of finite Galois extensions
Ki/F such that F ⊆ Ki ⊆ K. Define Ui := Gal(K/Ki) for i ∈ I. Then, the following
hold:
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1. For every i ∈ I, Ui E G and G/Ui ' Gal(Ki/F ) is finite.

2. For every i, j ∈ I, there exists Uk ⊆ Ui ∩ Uj.
3.
⋂
i∈I Ui = {1}.

Sketch. These mostly follow from finite Galois theory and field theory.

1. To see that Ui is normal in G, take any u ∈ Ui := Gal(K/Ki). Let g ∈ G
and consider the action of gug−1 on an element α ∈ Ki. Let f(x) ∈ K[x] be
the minimal polynomial of α. Then, because σ(f(x)) = f(σ(x)) for every field
automorphism fixing F , we have that g maps α to another root of f . By normality
of the extension gα is a root of f that lies in Ki. But this means that u fixes gα,
and we have

gug−1α = gg−1α = α

for every α ∈ Ki, so gug−1 ∈ Ui as desired.
2. Take Uk to be the Galois group of Gal(K/KiKj), where KiKj is the compositum

of Ki and Kj . Equivalently, if Ki and Kj are the splitting fields of fi and fj ,
respectively, then we can take KiKj to be the splitting field of fifj .

3. Observe that because K is algebraic, it is the union of all the Ki’s.

Proposition 17 shows that the Ui form a local base at 1, and for a topological
group, a local base defines a base for the entire group because the translation map is
continuous. This means that the Ui generate a topology on the Galois group.

Definition 18. Let K/F be a Galois extension with Galois group G := Gal(K/F ).
Then, the Krull topology on G is the topology generated by the local base Ui :=
Gal(K/Ki) from Proposition 17

With the preliminaries out of the way, let us now prove the three main theorems of
infinite Galois theory.

Theorem 1 ([RZ10] Theorem 2.11.1). Let K/F be a Galois extension with Galois
group G := Gal(K/F ), and define K := {Ki|i ∈ I} as the collection of finite Galois
extensions Ki/F such that F ⊆ Ki ⊆ K. Then G endowed with the Krull topology is a
profinite group and

Gal(K/F ) = lim←−
i∈I

Gal(Ki/F ).

Furthermore, the Krull topology on Gal(K/F ) agrees with the relative subspace topol-
ogy on the inverse limit, if each finite quotient is endowed with the discrete topology.

Proof. To show that G is profinite, as per Proposition 11(d), we want to show the
existence of a local base of open neighborhoods about 1 such that G is homeomorphic
and isomorphic as a group to an inverse limit of quotient groups

Gi := G/Ui ' Gal(Ki/F ).

Let us start by defining the inverse system. We order I by saying that i ≤ j ⇐⇒
Ki ⊆ Kj ⇐⇒ Ui ⊇ Uj . Then, define the homomorphisms

φji : Gj = Gal(Kj/F )→ Gi = Gal(Ki/F )
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by restriction. These homomorphisms are well defined because the Ki/F are Galois
and hence normal. This gives us an inverse system.

We claim that
G ' lim←−

i∈I
Gi.

We have a homomorphism from σ ∈ G to the inverse limit σ1, σ2, · · · ∈ lim←−i∈I Gi by
restriction. For the inverse mapping, we get a σ ∈ G from a (σ1, . . . ) ∈ lim←−i∈I Gi by
noting that any element α ∈ K/F must live in some finite extension Ki/F (because
K/F is algebraic) and we can define σ(α) = σi(α). Thus, the groups are isomorphic.

To show that this isomorphism is in fact a homeomorphism, observe that

Gal(K/Ki) ' (lim←−
i∈I

Gi) ∩

 ∏
Kj 6⊆Ki

Gj

×
 ∏
Kj⊆Ki

{1}j

 .

under the above isomorphism. Observe that the right hand side forms a local base for
the identity element of the inverse limit. This means that elements generating a local
base of the Galois group under the Krull topology correspond to elements generating a
local base of the inverse limit, so the topologies agree.

Example 19 (Absolute Galois Group of Fq). The finite extensions of Fq are Fqr for
r ∈ Z≥1. Theorem 1 tells us that

Gal(Fq/Fq) ' lim←−Gal(Fqr/Fq).

It can be shown that Gal(Fqr/Fq), an order r group, is in fact generated by the Frobenius
automorphism, x 7→ xq

r , and therefore that Gal(Fqr/Fq) ' Z/rZ. Putting this all
together, we have that

Gal(Fq/Fq) ' lim←−Z/rZ.

Theorem 2 ([RZ10] Theorem 2.11.3). Let K/F be a Galois extension with Galois group
G := Gal(K/F ), F(K/F ) be the set of intermediate fields F ⊂ L ⊂ K, and S(G) be the
set of closed subgroups of G. There is an inclusion-reversing bijection between the closed
subgroups of G under the Krull topology and intermediate field extensions of K/F . The
bijections are as follows:

φ : F(K/F ) → S(G)
L 7→ Gal(K/L).

Its inverse is

ψ : S(G) → F(K/F )
H 7→ KH

where KH denotes the fixed subfield of K under H.

Remark. Every open subgroup of a topological group is also closed (it is the complement
of the union of all the other cosets, each of which is open by the continuity of the
translation map).
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Proof. It is clear that φ is inclusion reversing. Denote by τL the Krull topology on
Gal(K/L), generated by {Gal(K/Li) : Li/L finite} (and its translates) and by τF the
Krull topology on Gal(K/F ). Let us start by showing that φ(L) = Gal(K/L) is closed
in τL when L/F is finite. Proposition 11 tells us that Gal(K/L) is compact with respect
to τL. Because L/F is finite, the Li are also the finite extensions of F that contain L,
and thus{

Gal(K/Li) : Li/L finite
}

=
{

Gal(K/Fi) ∩Gal(K/L) : Fi/F finite
}
.

Therefore, τL is the subspace topology of τF whenever L/F is finite. There can be no
open cover of Gal(K/L) in τF without a finite subcover because any such open cover
must restrict to an open cover without a finite subcover Gal(K/L) in τL, which is a
contradiction. Thus, Gal(K/L) is compact in τF . Proposition 11 also tells us that
Gal(K/F ) is Hausdorff, and because compact subsets are closed in Hausdorff spaces,
Gal(K/L) is closed.

When L/F is infinite, observe that L/F =
⋃
Fi/F where F ⊂ Fi ⊂ L and the Fi/F

are finite. This implies that Gal(K/L) '
⋂

Gal(K/Fi), where each Fi/F is a finite
extension. By the case above, this means that Gal(K/L) is the intersection of closed
subgroups and hence that it is closed.

We will next show that ψ is the inverse of φ. First, note that ψφ(L) = L. It is
clear that L ⊆ ψφ(L) = ψ(Gal(K/L)). Suppose that there were some α ∈ K \ L that
was also fixed by every element in Gal(K/L). Let f be the minimal polynomial of α
in L[x]. Then, there exists an automorphism in Gal(K/L) that sends α to a different
root of f(x). However, because α is fixed by Gal(K/L), there must be no other roots,
and f must have degree 1. Therefore, α ∈ L, as desired.

For the converse, we want to show that φψ(H) = H. It is clear that H ⊆ φψ(H) =
Gal(K/KH). We wish to show that the inclusion is an equality. We will do so by
showing that H is dense in Gal(K/KH). To do this, we will show that every open
neighborhood of any σ ∈ Gal(K/KH) (in τKH , the Krull topology on Gal(K/KH)) in
fact contains some element of H. An open neighborhood around σ is a translate of an
open ball around 1. In τKH , the open neighborhoods are Gal(K/N) where N/KH is
finite. Thus, we want to show that

τGal(K/N) ∩H 6= ∅

for all finite extensions N/KH and τ ∈ Gal(K/KH). Notice that {σ|N : σ ∈ H} is a
group of automorphisms of N that fixes KH . By Theorem 14, {σ|N} = Gal(N/KH).
Thus, every τ|N is equal to some σ|N , and thus there exists a σ and an element x ∈
Gal(K/N) such that τx = σ.

Remark. As it turns out, normal subgroups do still in fact correspond to normal exten-
sions, but we will not prove this here in the interest of space.

Theorem 3 ([RZ10] Theorem 2.11.5). If G is a profinite group, then there exists a field
F and Galois extension K/F such that Gal(K/F ) = G.

Proof. Intuitively, we want to pick a field K, call the field of its fixed points under
G-action L, and then claim that K/L has Galois group G. the main challenge here is
finding a field K that:
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• Has a natural G-action.

• Is a Galois extension of the field of its fixed points under G.

Take F to be any field and let T be a set of indeterminates, one for each element
in the disjoint union of G/U over all open normal subgroups U E G. K := F (T ), the
rational function ring of functions with coefficients in K and indeterminates from T .
Then, G acts on F [T ] via g · (g′U) 7→ gg′U and by fixing F . Define L := KG to be the
set of elements of K fixed under G action. We claim that K/L is Galois.

Pick a k ∈ K. If k includes the indeterminates {ti}, where ti ∈ G/Uj for j ∈
{1, . . . , n}, then

n⋂
i=1

Ui ⊆ Gk

where Gk is the stabilizer group of k ∈ K.
We chose the Ui to be open subgroups and finite intersections of open sets are

open, so
⋂n
i=1 Ui is an open subgroup of Gk. Furthermore, all its cosets in Gk are

open because translation is continuous, so Gk can be written as the (possibly infinite)
union of open sets and Gk is also open. Recall that in the Krull topology, open sets
containing 1 are generated by subgroups of the form Gal(Ki/F ) where Ki/F is finite.
These subgroups all have finite index, and a union of subgroups, if it is also a subgroup,
must have smaller (hence finite) index. Thus, the stabilizer group Gk has finite index
in G and so the orbit of k is finite. Suppose that the orbit of k consists of the elements
{k1, k2, . . . , kr} ∈ Kr. The polynomial

f(x) =
∏
i

(x− ki)

is fixed under the G-action because roots are permuted, but this means that the coeffi-
cients are fixed and thus lie in L := KG. Thus, every k ∈ K is the root of a polynomial
with coefficients in L, so K/L is algebraic. Furthermore, the polynomial is separable,
as the ki are distinct, and the extension is normal because it is the union of the normal
extensions L(k1, . . . , kr)/L - intuitively, we have all the other roots because they are all
within a G-orbit. Thus, K/L is Galois.

The last thing to check is that G = Gal(K/L). It is clear that G ⊆ Gal(K/L). We
will prove equality by showing that the inclusion map G ↪→ Gal(K/L) is continuous.
Consider any open subgroup U ⊆ Gal(K/L). Remark 3 tells us that open subgroups
are closed, so KU/L is a finite extension per Theorem 2 and the extension is isomorphic
to L(k1, . . . , kr) for some k1, . . . , kr ∈ K/L. Earlier in the proof of this theorem, we
could not be sure that the stabilizer groups were of finite index because we did not a
priori know that the extension was algebraic. Here, however, we know that KU/L is
algebraic, and therefore the groups Gki of finite index in G and are open subgroups.
This tells us that

⋂r
i=1Gki is open. However, observe that

r⋂
i=1

Gki ⊆ G ∩ U

because an element in
⋂r
i=1Gki fixes everything in KU and thus must be in U by

Theorem 2. The intersection of open subgroups is open, and thus G ∩ U contains an
subgroup that is open in U . The cosets of this subgroup must also be open (by the
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continuity of translation), so G∩U can be written as the union of open subgroups and
is an open subgroup of G. This proves continuity of the inclusion map. This tells us
that G is a closed subgroup of Gal(K/L) (it is the inverse image of Gal(K/L) under a
continuous map). However, two closed subgroups which fix the same field must be the
same by Theorem 2

4 Group Cohomology

4.1 Basic Definitions
In the following, G is a profinite group and A is a discrete G-module (e.g. a discrete
abelian group on which G acts). Group cohomology can be defined exactly as in the case
of a finite G, except we restrict ourselves to continuous maps. All of these definitions
are from [RZ10]

Definition 20. Cn(G,A) is the set of continuous maps from Gn to A.

Definition 21. The coboundary of f ∈ Cn(G,A), written df , is defined as

df(x1, . . . , xn, xn+1) :=x1f(x2, . . . , xn+1)

+
n∑
i=1

(−1)if(x1, . . . , xi−1, xixi+1, xi+2, . . . , xn+1) + (−1)n+1f(x1, . . . , xn).

Definition 22. f ∈ Cn(G,A) is an n-cocycle if df = 0. The group of n-cocycles is
denoted Zn(G,A) ⊆ Cn(G,A).

Proposition 23 (Basic Formula). d ◦ d = 0.

Definition 24. Let Bn(G,A) = d(Cn−1(G,A)) ⊆ Cn(G,A). Then, the nth cohomol-
ogy group is defined by Hn(G,A) := Zn(G,A)/Bn(G,A).

4.2 Long Exact Sequence of Cohomology
Consider the short exact sequence

1 −→ A −→ B −→ C −→ 1

where A,B,C are G-modules. We have from exactness that C ' B/A. As with any
objects with a group action, we are frequently interested in the fixed points of A,B,
and C under G-action and the relationship between the groups of fixed points. While
BG/AG ⊆ CG ' (B/A)G, the two are not in general equal. Intuitively, the cohomology
group H1(G,A) measures the discrepancy between them. In fact, we can say more.

Theorem 25 ([Ser79] Chapter VII §2). Suppose that

1 −→ A −→ B −→ C −→ 1

is a short exact sequence. Then, there exist connecting homomorphisms δi such
that we have the long exact sequence

1 −→ H0(G,A) −→ H0(G,B)
π−−→ H0(G,C)

δ0−−→ H1(G,A)

−→ H1(G,B) −→ H1(G,C)
δ1−−→ H2(G,A) −→ · · ·
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Sketch. We will define δ0. The proof of exactness and the definition of δi for larger i is
left to the reader.

For a G-moduleM , note that H0(G,M) 'MG, the fixed points ofM under the G-
action. Thus, δ0 is a homomorphism from CG to H1(G,A). Given an element c ∈ CG,
let b ∈ BG be a lift of c to BG (so c is the image of b). Then, δ0 is defined as

δ0 : CG → H1(G,A)

c 7→
(
σ 7→ σ(b)

b

)
.

Because c is fixed under the G-action, σ(b)
b is an element of A. It can be shown

that the output is in fact an element of H1(G,A) that is independent of our choice of
b (which lift of c we choose), so the map is well-defined. It is clear that the map is a
homomorphism.

5 Applications to Kummer Theory and Beyond
Theorem 26 ([Art11] Theorem 15.3.3). An extension K/F is quadratic if and only if
K = F [

√
α] for some α ∈ F that is not a square.

Unfortunately, while not all degree-n extensions can be obtained by adjoining an
nth root, the main theorem of Kummer theory tells us which degree-n extensions can
be.

Theorem 5 ([CF10] Chapter III §2). If k is a field containing n distinct roots of unity,
a finite abelian extension of k of exponent dividing n can be obtained by adjoining nth

roots of elements of k.

We will use all the machinery developed thus far to prove this theorem. Let us first
state a lemma that will be useful in the proof. In what follows, K/F will be a Galois
extension with Galois group G := Gal(K/F ).

Lemma 27 ([Ser79] Chapter X Proposition 2). H1(G,K×) = 0

Theorem 4 ([Ser97] Chapter II §1). Suppose that

• G is a profinite group.

• A is a G-module with trivial G-action.

• π is a surjective homomorphism of B with kernel A.

• B is a G-module.

• H1(G,B) = 0.

Then,
Hom(G,A) ' BG/π(BG)

where Hom(G,A) denotes the set of continuous homomorphisms from G to A.
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Proof. The conditions imply that we have the exact sequence

1 −→ A
i−−→ B

π−−→ B −→ 1

where i is the inclusion homomorphism. By Theorem 25, we have the exact sequence

AG −→ BG π−−→ BG −→ H1(G,A) −→ H1(G,B)

Because H1(G,B) = 0, we have the isomorphism

BG/π(BG) ' H1(G,A)

By the definition of cohomology groups, f ∈ H1(G,A) if, for every s ∈ G, f maps
s to an element a ∈ A such that sa − a = 0. Because we have assumed that G acts
trivially on A, this is vacuously satisfied and H1(G,A) = Hom(G,A). Thus,

BG/π(BG) ' Hom(G,A)

as desired.

Now, we can prove the desired result. Denote by Ksep the separable closure of the
field K.

Proof of Theorem 5. In Theorem 4, take B := K×sep, G := Gal(Ksep/K), and π the
surjective homomorphism on K×sep sending x 7→ xn. The kernel of this map, A, is the
multiplicative group of the nth roots of unity, which we write as µn, and

Hom(G,µn) ' (K×sep)
G/((K×sep)

G)n ' K×/(K×)n.

Now, let us define Kab to be the compositum of all abelian extensions of K and
Kab,n to be the compositum of all abelian extensions of K which have Galois groups of
exponent dividing n. We claim that Hom(G,µn) ' Hom(Gal(Kab,n/K), µn).

First, observe that Hom(G,µn) ' Hom(Gal(Kab/K), µn). Given a homomorphism
π in Hom(Gal(Kab/K), µn, we can construct an element π′ of Hom(G,µn) by defining

π′(g) = π(ḡ).

It is easily checked that this map is a homomorphism from Hom(Gal(Kab/K) into
Hom(G,µn). To see that this map is also invertible, notice that D(G) is always in
the kernel of a map from G to µn. Therefore, Hom(G,µn) ' Hom(G/D(G), µn).
Gal(Kab/K) is the maximal abelian quotient of G := Gal(Ksep/K) (it’s the Galois
group of the maximal abelian extension), and so Gal(Kab/K) ' G/D(G). Elements of
exponent not dividing n necessarily map to 1 in the image, and so applying the same
logic yields the isomorphism

K×/(K×)n ' Hom(G,µn) ' Hom(Gal(Kab,n/K), µn).

In general, for a groupG′ and subgroupH ′ ⊆ G′, Hom(G′/H ′, µn) can be viewed as a
subgroup of Hom(G′, µn). This is because, just as above, every element of Hom(G′/H ′, µn)
extends to an element of Hom(G′, µn) via composition with the quotient map. If L/K
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is a finite abelian extension with exponent n, then Gal(L/K) is a finite quotient of
Gal(Kab,n/K) and we have that

∆ ' Hom(Gal(L/K), µn)

where ∆ is a finite subgroup of K×/(K×)n. To prove the theorem, it suffices to show
that L ' K(∆

1
n ), the field obtained by adjoining the nth root of every element of ∆.

Let us proceed by making precise the aforementioned isomorphism. Recall from
Theorem 4 the definition of the connecting homomorphism δ0. Here, given an element
c ∈ ∆, δ0 chooses an nth root of c it calls b, and sends c to the homomorphism σ 7→ σ(b)

b .
The homomorphism σ must send b to another root of the polynomial xn − c, and thus
σ(b)
b ∈ µn.
Now that we have specified the isomorphism, we will not detail the remainder of

the proof. What follows is a sketch. The Galois group factors as a product of cyclic
groups. Looking at each cyclic factor, we can use the above isomorphism to show that
the corresponding cyclic extensions ofK are obtained by adjoining a single nth root. We
can also see that these extensions intersect only at K and thus that their compositum
has Galois group Gal(L/K). It can then be shown that L must be of the desired form.
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