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In this note, we present an efficient reduction from QMATIME[n] in the uniform quantum cir-
cuit model to the 2-local Hamiltonian problem. The result can be deduced without much diffi-
culty from the proof of QMA-completeness of the 2-local Hamiltonian due to Kempe, Kitaev, and
Regev [KKR06] along with an algorithmic version of the Solovay-Kitaev theorem due to van Melke-
beek and Watson [vMW12]. As we were unable to find this result in the literature, we present
a short proof here. This is motivated by the prospect of extending the lower bound of [MW20]
on QCMATIME[n] against deterministic small space computation to a lower bound on the k-local
Hamiltonians problem.

1 Preliminaries

1.1 Notation

U(d) is the set of 2d × 2d unitary matrices. Given a quantum state over n qubits and an operator
A ∈ U(2m) for m ≤ n, we write A(i1,i2,...,im) with i1, i2, . . . im distinct to denote the operator in
U(2n) which is applies A to the specified qubits and acts trivially on all other qubits. We will
sometimes use superscripts to denote indices rather than powers.

1.2 The Computational Model

We use the usual definition of a quantum circuit. The acceptance probability of a quantum
circuit Q on a state |ψ〉 is the probability that measurement of the first qubit of Q |ψ〉 is 1. Let U be
a universal set of unitary operators. A quantum circuit family is a set {Qn : n ∈ N}, where each
Qn is a quantum circuit with n input bits and some number of ancilla qubits. Note that each U ∈ U
acts on O(1) qubits (i.e. some fixed constant independent of n) because U is a finite set. The size of
a quantum circuit family is a function t : N→ N where t(n) is the number of tuples in Qn. Consider
s, u : N→ N. A quantum circuit family is (s, u)-uniform if there exists a deterministic algorithm
that, given as inputs 1n and i, j, k ∈ N, can print the entry at position (i, j) of the kth unitary of
Qn and the list of qubits that this unitary acts on in u(n) time and s(n) space simultaneously.

1.3 Universal Sets and the Solovay-Kitaev Theorem

A priori, it may seem that the size of a uniform quantum circuit family which solves a given problem
could depend on the universal set U that is used. However, this turns out not to be the case. This
is a consequence of a constructive and space-efficient form of the Solovay-Kitaev theorem due to
van Melkebeek and Watson [vMW12].
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Theorem 1.1 (Theorem 4.3 of [vMW12]). For each constant integer d ≥ 2 the following holds.
Suppose U ⊆ U(d) is a finite set closed under adjoint such that for every U ∈ U(d) and every ε > 0
there exists a sequence U1, . . . , Uk ∈ U and a global phase factor eiθ such that ||U−eiθUk . . . U1|| < ε.
Then for every U ∈ U(d) and every ε > 0 there exists a sequence U ′1, . . . , U

′
k′ ∈ U with k ≤ logO(1)(1ε )

and a global phase factor eiθ′ such that ||U − eiθ′U ′k′ . . . U ′1|| < ε. Moreover, such a sequence can
be computed by a deterministic algorithm running in logO(1)(1ε ) time and O(log 1

ε ) space, given as
input ε and matrices that are at distance at most f(ε) from U and the gates in U , where f is a
certain polynomial depending only on d.

This is a space-efficient form of the classic Solovay-Kitaev theorem, where the deterministic
algorithm has the same runtime but uses logO(1)(1ε ) space rather than O(log 1

ε ) space.

Corollary 1.2. Let U and U ′ be universal sets of unitaries closed under adjoint, and assume If
an (s, u)-uniform quantum circuit family {Qn}n∈N over U has size t(n) then there is an (s′, u′)-
uniform quantum circuit family {Q′}n∈N of size t(n) logO(1) t(n) over a universal set U ′. such that
the acceptance probability of Q′ on any input |ψ〉 differs from that of A′ by at most an additive
constant.

This corollary is essentially the same as Theorem 1.2 of [vMW12], but we include a proof because
our model for quantum computation is somewhat different from theirs.

Proof. Suppose that {Qn} is a size t(n) quantum circuit family over a universal set U . We’ll start
by describing the structure of a quantum circuit family {Q′n} over a finite universal set U ′ that
is closed under adjoint and subsequently show that we can build the latter from the former while
satisfying the uniformity conditions.

By Theorem 1.1, for each n ∈ N, for any ε, each U ∈ Qn can be replaced by a sequence of
logO(1)(1ε ) gates from U ′ such that the error accrued through replacing U alone is less than ε. We
will take ε = O( 1

t(n)) because that way, by the triangle inequality, replacing all t(n) unitaries in Qn
will not change the acceptance probability by more than an additive constant. Note that the global
phase factor is irrelevant because it disappears under measurement.

Theorem 1.1 also tells us that there is a deterministic algorithm that can produce the appropriate
sequence of unitaries given a sufficiently accurate description of U and the unitaries in S′. The
accuracy that we need depends only on the dimension of U . Because U ∈ S and S ∪ S′ is a finite
set, we can hardcode these descriptions in the algorithm as d is a constant. Furthermore, the
cost is logO(1) n time and O(log n) space per unitary in Qn, so the runtime stays the same up to
polylogarithmic factors. If the initial algorithm was bitwise log-uniform then this one will be as
well because given an index k, we can compute the kth unitary from Q′n efficiently by figuring out
which unitary in Qn this corresponds to and running the algorithm that prints the approximation
in logO(1) n time. Note that we can make finding the unitary in Qn corresponding to an index k′

from Q′n easy by approximating each U ∈ Qn with the same number of unitaries from S′.

We will use the universal set of unitary matrices given by the following lemma.

Lemma 1.3 ([Aar16]). {CNOT,G} is a universal set, where

G :=

[
3
5

4i
5

4
5
−3i
5

]
. (1)

1.4 Quantum Merlin-Arthur

Definition 1.4. QMATIME[n]u is the class of languages decided by quantum Merlin-Arthur proto-
cols where the verifier is given by an (s, u)-uniform quantum circuit family of size O(n).
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1.5 The k-Local Hamiltonians Problem

The k-local Hamiltonians problem is a well-known QMA-complete problem, and can be thought of
as a quantum analogue of the NP-complete MAX-SAT problem.

Definition 1.5. A operator H acting on n qubits is a k-local Hamiltonian if it can be written as∑r
i=1Hi where each Hi is Hermitian, acts only on k qubits, and r = nO(1).

Definition 1.6. An instance of the k-local Hamiltonians (promise) problem consists of two con-
stants a, b, with a < b, and a representation of a k-local Hamiltonian H. Without loss of generality,
we will expect the representation to consist of tuples of form (Hi, S), where each Hi is a 2k × 2k

matrix over the complex numbers and S specifies the qubits on which Hi acts. We define the size
of a k-local Hamiltonians instance to be the number of bits required to write down the instance,
taking into account bit complexity of a, b, and the entries of each Hi.

Building on ideas of Feynman, Kitaev showed that the 5-local Hamiltonian problem is QMA-
complete [KSV02]. The value of k was reduced further, first in [KR03] to 3 and finally in [KKR06]
to 2. The 1-local Hamiltonian problem is in P, so this is as far as we can go.

Lemma 1.7 ([KSV02]). For k = O(1), the k-local Hamiltonians problem on n qubits is contained
in QMATIMEs,u[n] for some s(n) = O(log n), u(n) = logO(1) n.

Sketch. Our algorithm will be the same as that in [KSV02] with an amplification step at the end.
We refer the reader to [KSV02] for a proof of correctness, and here will just check that it has the
requisite time and space complexity. Given the description of Hi, we first perform singular-value
decomposition to write it as

∑k
j=0 λ

i
j |ψij〉 〈ψij |, where the eigenvalues and eigenvectors are computed

to whatever accuracy is needed. A priori, it could be the case that some entries of the matrix are
represented with O(n) bits. However, all we will need is an approximation of Hi up to an O( 1k )
error, which is O(1) since k = O(1). Therefore, if we take the input to be in (say) binary scientific
notation, we see that we can consider just a constant number of bits per entry of Hi. Thus, we can
write down the operator Wi, where

Wi :=
∑
j

|j〉 〈j| ⊗
(√

λij |0〉 〈0|+
√

1− λij |1〉 〈0| −
√

1− λij |0〉 〈1|+
√
λij |1〉 〈1|

)
. (2)

Wi is some matrix in U(k). Applying the deterministic algorithm from Theorem 1.1 with sufficiently
small constant error, we can implement W in O(1) time and O(log n) space.

As in [KSV02], our algorithm – given the n qubit state |η〉 from Merlin – consists of picking a
random i, computing Wi |η〉, measuring the first qubit, and accepting if it is |1〉. The runtime so
far is O(log n) because drawing a random j ∈ [r] requires dlog re = O(log n) measurements. Our
current soundness gap is 1

r . We may apply Marriot-Watrous in-place amplification to increase the
soundness gap to Ω(1). The length of the requisite proof string remains O(n), the space complexity
remains the same (the additional steps in Marriot-Watrous amplification are simple to describe),
and the runtime increases to O(n log n).

2 A Tight Reduction from a subset of QMATIME[n] to 2-local Hamil-
tonians

We will exhibit an efficient reduction from QMATIME[n]s,t in the uniform quantum circuit model to
the 2-local Hamiltonians problem. The reduction, applied to an n-bit input, will yield an instance
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of 2-local Hamiltonians of length at most n logO(1) n. Furthermore, a given bit of the reduction can
be computed in s(n) +O(log n) space and t(n) + logO(1) n time. Our result follows as a corollary of
the aforementioned proof of QMA-completeness of the 2-local Hamiltonian problem.

Theorem 2.1 ([KKR06]). Suppose a size t quantum circuit Q with n inputs has the following
properties.

1. Given a tuple (i, j, k, l), the lth bit of the (j, k)th entry of the ith unitary can be computed in
u(n) time and s(n) space simultaneously.

2. The circuit consists only of single-qubit gates and the controlled phase gate Cφ.

3. Each Cφ gate is preceded and followed by two Z gates, one on each qubit.

4. The Cφ gates occur at regular intervals, with the same number of single-qubit gates in between
any two consecutive Cφ gates.

Then, there exists a 2-local Hamiltonian H with O(n+ t) 2-local terms such that

• If Q accepts with probability more than 1− ε on some input then H has an eigenvalue smaller
than ε.

• If Q accepts with probability less than ε for all inputs then all eigenvalues of H are larger than
1
2 − ε.

Furthermore, any local term can be computed in u(n) time and s(n) space simultaneously.

Theorem 2.1 is implicit in [KKR06], although the authors do not expressly discuss time and
space uniformity. Observe that Theorem 2.1 gives a reduction from any quantum Merlin-Arthur
protocol whose verifier is in the specified form to 2-local Hamiltonians. We shall show the following:

Corollary 2.2. 2-local Hamiltonians is hard, under (deterministic) reductions in s(n) + O(log n)
space and n(u(n) + logO(1) n) time simultaneously, for QMATIMEs,u[n]. Furthermore, each bit of
the reduction can be computed in u(n) + logO(1) n time and s(n) space simultaneously.

It suffices to show that an arbitrary linear-time quantum verifier can be converted into one
satisfying the conditions of Theorem 2.1.

Proof of Corollary 2.2. Take Q0 in Theorem 2.1 to be the verifier of the QMA protocol with the
input fixed, and suppose it is given over some universal set U . We may apply Corollary 1.2 to obtain
an equivalent circuit over the set U ′ := {Cφ, H,G,G†,Z — U ′ is universal and closed under adjoint
by Lemma 1.3 because applying a Hadamard gate before and after the target qubit of Cφ yields a
CNOT gate. U ′ satisfies the condition 2 by definition. It also satisfies condition 1 because all the
entries of the single qubit operators in U ′ have finite decimal representations1. It remains to show
that we can uniformly convert this circuit to a form satisfying conditions 3 and 4.

We first add two ancilla qubits to Q, which we label with indices −1,−2. Let C ′φ,(i,j) denote
the sequence of operators Z(i)Z(j)Cφ,(i,j), Z(i), Z(j), and let C ′φ,− := C ′φ,(−1,−2). Observe that C ′φ,(i,j)
is equivalent to Cφ,(i,j) because ZiZj and Cφ,(i,j) commute (they are both diagonal matrices). We
replace each Cφ,(i,j) in Q by the sequence C ′φ,−, I, C

′
φ,(i,j), I. Each single qubit unitary A(i) in Q is

replaced by the sequence C ′φ,−, Ai, C
′
φ,−, I. Lastly, we append a single C ′φ,− to the circuit to make

1This doesn’t really matter as long as we can get arbitrarily good approximation to the entries of single qubit
entries in our chosen universal set time and space efficiently.
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the total number of applications of C ′φ even (if it would otherewise be odd). The point of this is
that now the C ′φ occur at regular intervals but the C ′φ,− do not change the result of the computation
as in the end they all cancel out. Each unitary in the initial circuit is replaced with twelve gates in
the new circuit. We can now apply Theorem 2.1 to finish.

It’s worth noting that Corollary 2.2 does not immediately imply that the lower bound of [MW20]
extends to a lower bound on k-local Hamiltonians because that lower bound is against QCMATIME[n]
on quantum random-access machines. The missing piece is a tight (up to polylogarithmic factors)
relationship between QCMATIME[n] on quantum random-access machines and QCMATIME[n] in
the uniform circuit model, analogous to the corresponding result for nondeterministic linear time
due to Gurevich and Shelah [GS89].
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