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Abstract. We design and implement an algorithm for computing q-expansion bases of spaces of Hilbert
modular forms of nonparitious weight over fields of narrow class number 1. We use this algorithm to compute
spaces of Hilbert modular forms over Q(

√
2) and Q(

√
5) of weight (1, 2) with Galois stable levels of norm

up to 1500 and quadratic nebentypus. To study this algorithm, we introduce the “elemental” Hecke algebra,
a finite algebra generated by rescalings of the usual Hecke operators acting on a space of Hilbert modular
forms. The elemental Hecke algebra is equivalent to the usual Hecke algebra in paritious weight, but retains
certain rationality properties even in the nonparitious setting even when the usual Hecke algebra is poorly
behaved. Using the elemental Hecke algebra, we are also able to present self-contained proofs of some
standard facts about Hilbert modular forms that we use in the algorithm.

1. Introduction

If you came to this link looking for examples, please jump to Section 6! The Langlands pro-
gramme is a sweeping web of conjectures relating automorphic forms, Galois representations, motives, and
L-functions. Typically, given an object in one of these four worlds, one hopes to construct corresponding
objects in the others. For example, the H1 of an elliptic curve E/Q is a motive to which one can associate a
compatible family of ℓ-adic Galois representations (the first étale cohomology of E), an L-function, and most
nontrivially, an automorphic form. However, not every automorphic form is expected to contribute directly
to this story. An automorphic representation over a field K is said to be L-algebraic if its archimedean com-
ponents satisfy a certain integrality condition. Only L-algebraic automorphic representations are expected
([BG14, Conjecture 3.21]) to have associated compatible systems of ℓ-adic Galois representations valued in
LG(Qℓ). It is also conjectured ([BG14, Conjecture 3.15]) that an automorphic representation π is L-algebraic
if and only if it is L-arithmetic , i.e. if there is a number field E such that at all unramified primes p, the
Satake parameter of πp is defined over E. L-arithmetic representations are particularly conducive to compu-
tations as we can perform many computations on them over a fixed number field independent of the primes
are interested in.

Much of the existing work on automorphic forms in the context of the Langlands programme focuses on
forms whose associated automorphic representations are L-algebraic. The simplest examples of automorphic
representations that are not L-algebraic arise from nonalgebraic Hecke characters. One can show that
algebraic Hecke characters correspond to compatible families of ℓ-adic Galois characters [Sno09]. In this
paper, we will be interested in arguably the second simplest class of nonalgebraic representations, which
arise from Hilbert modular forms of nonparitious weight.

1.1. Hilbert modular forms. Hilbert modular forms are a natural generalization of classical modular
forms (which are automorphic forms for GL2/Q) to totally real fields of higher degree. We refer the reader
to Section 2.4 for background on Hilbert modular forms. We write Mk(N, χ) for the space of Hilbert modular
forms with level N ⊂ ZF , weight k ∈ Z[F :Q]

≥1 and nebentypus character χ. We say that k is paritious if the
entries of k are all congruent modulo 2, and nonparitious otherwise. The theories of Hecke operators and
newforms extend to the setting of Hilbert modular forms. The automorphic representation associated to a
Hilbert modular newform f is L-algebraic if and only if the weight of f is paritious.

Hilbert modular forms have q-expansions, and because the space Mk(N, χ) is finite-dimensional, we can
describe it explicitly by giving the q-expansions (to some precision) of a basis of forms spanning Mk(N, χ).
As in the setting of modular forms, Mk(N, χ) is spanned by Hecke eigenforms. As such, we can access
the space by first computing matrices for the action of the Hecke operator Tp on Mk(N, χ) for sufficiently
many p. By the Jacquet-Langlands correspondence, we can compute these matrices by studying the Hecke
action on certain spaces of quaternionic modular forms for a quaternion algebra B/F . Algorithms for
producing these matrices when F has narrow class number 1, k = (2, . . . , 2) (parallel weight two), and χ = 1
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(trivial nebentypus) were invented and implemented by Greenberg-Voight [GV11] for indefinite B and by
Dembélé [Dem07] for definite B. These methods were extended to the fields of arbitrary narrow class number
and general paritious weights by Voight [Voi10] and Dembélé-Donnelly [DD08] respectively. Given matrices
for the Hecke action on Mk(N) := Mk(N, 1) for k = (2, . . . , 2), Donnelly and Voight [DV21] describe an
algorithm for producing a basis of M2(N). Their algorithm uses several properties of the finite Q-algebra –
the Hecke algebra – generated by the operators {Tp} acting on Mk(N). Their method was later generalized
to paritious weight k. The main difference in this case is that the base field of the Hecke algebra is a subfield
of F gal that is only Q when the weight is parallel. In forthcoming joint work [ABB+26], we extend all of
the above algorithms to deal with an arbitrary nebentypus character χ, but still under the hypothesis of
paritious weight. In the definite case, the extension to general nebentypus was described (but to this author’s
knowledge not implemented) by Dembélé [Dem07].

In this work, we describe and implement an algorithm for computing Hilbert modular forms of nonparitious
weight over fields with narrow class number 1.

Theorem 1.1. Let F be a totally real field of narrow class number 1. Given an integral ideal N of F , a
weight k ∈ Z[F :Q]

≥1 , and a finite order Hecke character χ of F , there is an algorithm that computes a list of
q-expansions (to any given precision) of forms spanning Mk(N, χ).

1.2. “Elemental” Hecke operators. The usual Hecke operators {Tp} are poorly suited to the nonparitious
setting, as there is no number field over which they are all defined. It follows that the Hecke eigenvalues
of a normalized eigenform are not defined over a fixed number field. The Hecke eigenvalues of a newform
determine the Satake parameters of the associated automorphic representation, so this is exactly the failure
of L-arithmeticity in this setting. In particular, the methods of [DV21], which use crucially the fact that the
Hecke algebra on the new subspace can be written as a product of number fields, do not work here. The
main idea in the proof of Theorem 1.1 is the introduction of “elemental” Hecke operators and corresponding
“elemental” Hecke algebra. Given a totally positive generator π of p (we are assuming that F has narrow
class number 1), the elemental Hecke operator Tπ is a rescaling of Tp that depends on the choice of π but can
be defined over a number field independent of p. We will show that matrices for the action of the elemental
Hecke operators on spaces of quaternionic modular forms can be efficiently computed, and that replacing
the usual Hecke operators with elemental Hecke operators and the usual Hecke algebra with the elemental
Hecke algebra allows us to repair the existing algorithms and compute bases.

In the process, we give alternative proofs of several standard facts (Theorem 5.8, Proposition 5.9, Propo-
sition 5.10) about Hilbert modular forms appearing in e.g. [Shi78]. While these proofs will be of no surprise
to the experts, we hope that having self-contained proofs of these results that also work in the nonparitious
case will be of some use.

1.3. Previous computations of nonparitious Hilbert modular forms. This is not the first work to
compute nonparitious Hilbert modular forms. Buzzard [Buz12] computes the Satake parameters of an explicit
CM nonparitious Hilbert modular form of weight (1, 2) via automorphic induction. More recently, Dembélé,
Loeffler, and Pacetti [DLP19] associate Galois representations to nonparitious Hilbert modular forms and
compute some examples of nonparitious forms. To produce examples, they use the definite method of [Dem07]
to compute, for F = Q(

√
2) and F = Q(

√
5), the action of the Hecke operators {Tp} on Mk(N, χ). They

also use “naive” Hecke operators which are equivalent to our elemental Hecke operators {Tπ}, and compute
the naive Hecke eigenvalues of a particular nonparitious newform of weight (4, 3).

In our view, the main conceptual difference between this work and the computations of [DLP19] is that we
work entirely with the elemental Hecke operators from the beginning, rather than computing the usual Hecke
operators and then rescaling. This may seem like an unimportant distinction, but this point of view lets us
bypass issues of square roots and work with a number field independent of p throughout the computation.
Furthermore, this allows us to adapt the methods of [DV21] to produce bases of q-expansions for our spaces.

In practice, when computing spaces in paritious weight at multiple levels, we use various tricks – most
of which boil down to some version of Shapiro’s lemma – to facilitate efficient computation [DV13]. Our
implementation extends these approaches to nonparitious weight in both the definite and indefinite settings,
and is integrated with existing machinery for computing tables of Hilbert modular forms. While in some
sense these are “implementation details” rather than theoretical differences, these optimizations allow us to
efficiently compute spaces of nonparitious forms over higher degree fields and with large levels and weights.
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We believe that one of the features of the present work is that it is not an ad hoc implementation, but rather
part of the robust package for computing with Hilbert modular forms developed in [ABB+26].

1.4. Acknowledgments. I am grateful to my advisor, Frank Calegari, for proposing a relationship be-
tween abelian fourfolds of Mumford’s type and nonparitious Hilbert modular forms that motivated this
project [Cal21]. I learned much of what I know about Hilbert modular forms from him. This work builds
on code written by many others, but I’d particularly like to thank Eran Assaf, Edgar Costa, Alex Horawa,
Jean Kieffer, and John Voight for their numerous contributions and for humoring my incessant questions.
I would also like to thank Mateo Attanasio and Deding Yang for helpful conversations. Last but certainly
not least, I am grateful to the ANTS referee who is reading these words for taking the time to look at this
paper! I was supported by a Crerar fellowship and an NSF graduate research fellowship during part of this
work.

2. Preliminaries

2.1. Symbols.

• [n] – {1, . . . , n};
• F – totally real field of narrow class number
1;

• ZF – ring of integers of F ;
• Zp – completion of ZF at a prime ideal

p ⊂ ZF ;
• F gal – Galois closure of F ;
• F>0 – totally positive elements of F ;
• I>0 – totally positive elements of an ideal I;
• Z×

F,>0 – totally positive units of F ;

• d−1
F – codifferent of F ;

• GL+
2 (F ) – elements of GL2(F ) with totally

positive determinant;
• H – complex upper half-plane;
• B – quaternion algebra with center F ;
• B×

∞ –
∏′
v|∞B×

v ;
• B̂× –

∏
v∤∞B×

v ;
• O – (Eichler) order in B;
• Ô× –

∏
v∤∞ O×

v .

2.2. Embeddings and multi-index notation. We fix once and for all an embedding ι : Q ↪→ C. In
particular, this restricts to an embedding ι : F gal ↪→ R. We also fix an ordering (σi)i∈[n] of the n embeddings
of F into F gal. Given an element x ∈ F , we write xi := σi(x) ∈ F gal. Similarly, for a matrix γ ∈M2(F ), we
write γi ∈M2(F

gal) for the matrix obtained by applying σi entrywise.
Given a totally positive element x ∈ F gal we define x1/s to be the unique sth root y of x in Q such that

ι(y) ∈ R>0. We can extend this to define xr/s for any totally positive x ∈ F gal and r
s ∈ Q. We will make

frequent use of multi-index notation. For t ∈ Qn and x ∈ F gal, we write xt :=
∏
i x

ti
i =

∏
i σi(x)

ti ∈ Q.
Similarly, for z ∈ Cn and t ∈ Zn, we write zk :=

∏
i z
ti
i . For t ∈ Q and x ∈ F gal, we write xt :=

∏
i x

t
i.

2.3. Hecke characters. We refer to [Shu] for relevant background. A Hecke character on a field K is a
character χ : K×\A×

K → C×. Because C× has no small subgroups, there exists an open subgroup U ⊂ K̂× :=∏′
pKp on which χ|K̂× is trivial. The intersection U ∩K is an ideal N ⊂ ZK which we call the conductor of

χ and denote by cond(χ).
Choose a uniformizer at every finite place – this choice will not matter for our application, and does not

matter at all at primes coprime to the conductor. Writing ZK,p for the completion of ZK at p, we decompose
the idèle group as

(1) A×
K =

(
(R×)r × (C×)s

)
× IK ×

∏
p⊂ZK

Z×
K,p,

where IK is the group of fractional ideals of K. As such, we can decompose any Hecke character χ as a
product χ∞ · χI · χ0, where the three factors are the restriction of χ to the three factors in Equation (1),
respectively. In particular, χ0 is a Dirichlet character of K whose conductor is cond(χ). We can also extend
χ0 to a character of K̂× by defining it to be 1 on IK . We also write χ∗

I : IF → C for the function which is
χI(J) on any ideal J ⊂ ZK coprime to cond(χ) and is 0 otherwise.

We say that a Hecke character is finite order if χ∞ is finite order. In this case, χ∞χ0 determines χI on
principal ideals and there will be #ClK extensions of χ∞χ0 to χ – there always exists such an extension,
and any two extensions χ and χ′ differ by a character of ClK .
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2.4. Hilbert modular forms. Let F be a totally real number field of degree n > 1 of narrow class number

1. For z ∈ Hn and γ =

(
a b
c d

)
∈ GL+

2 (F ), we define

γz :=

(
ι(ai)zi + ι(bi)

ι(ci)zi + ι(di)

)
i∈[n]

∈ Hn and j(γ, z) := (ι(ci)zi + ι(di))i∈[n] ∈ Cn.

Given a function f : Hn → C, k ∈ Zn>0, and γ ∈ GL+
2 (F ), we can define another function

(f |kγ)(z) :=
(det γ)k/2

j(γ, z)k
f(γz).

Let N ⊂ ZF be an ideal, and set

O0(N) :=

{(
a b
c d

)
∈M2(ZF ) : c ∈ N

}
and Γ0(N) := O0(N) ∩GL+

2 (F ).

For a finite order character χ of modulus N and γ =

(
a b
c d

)
∈ O0(N), we define χ0(γ) := χ0(d).

Definition 2.1. Let N and χ be as above, and fix k ∈ Zn≥1. A Hilbert modular form of weight k, level N,
and nebentypus χ is a holomorphic function f : Hn → C such that for any γ ∈ Γ0(N), f |kγ(z) = χ0(γ)f(z).
We write Mk(N, χ) for the complex vector space of Hilbert modular forms of level N and nebentypus χ.

Remark. It may seem strange that the condition on f depends only on χ0 and not on all of χ. However, as
noted in Section 2.3, for F with (narrow) class number 1, χ0 determines χ and there is no distinction. For
a discussion of the general case, see [ABB+26].

A weight k is parallel if the entries of k are all the same and paritious if the entries of k are all congruent
modulo 2. Given a weight k, we write ki for the ith component of k and k0 := maxi ki. The space Mk(N, χ)
is a direct sum of the subspace of cusp forms Sk(N, χ) and the subspace of Eisenstein series, as defined
in [Shi78]. There are explicit formulas for the Eisenstein series in Mk(N, χ) (see [DK21]), so the problem of
computing a basis for Mk(N, χ) essentially reduces to computing a basis for Sk(N, χ). When k is nonparallel
there are no Eisenstein series at all, and Mk(N, χ) = Sk(N, χ).

Any f ∈Mk(N, χ) has a Fourier expansion

f(z) :=
∑

ν∈d−1
F,>0

aν(f) exp

2πi
∑
j

ι(νj)zj

 .

We call aν := aν(f) the Fourier coefficient of f at ν. Applying the condition in Definition 2.1 to the matrices(
ϵ 0
0 1

)
for ϵ ∈ Z×

F,>0, we find

(2) aϵν = ϵ
k/2aν for all ϵ ∈ Z×

F,>0

Similarly, applying it to
(
ϵ 0
0 ϵ

)
for ϵ ∈ Z×

F ,

(3) χ(ϵ) = sign(ϵ)k :=
∏
i

sign(ϵi)
ki for all ϵ ∈ Z×

F .

To any ν ∈ d−1
F,>0, we associate an integral ideal n := (ν)dF . The ideal n then has a corresponding “ideal

coefficient”

(4) an(f) := aν(f)ν
(k0−k)/2.

This is well-defined by Equation (2), as replacing ν by ϵν for ϵ ∈ Z×
F,>0 does not change the value of an(f).

Given an ideal m ⊂ ZF , there is an explicit formula for the Hecke operator Tm on f ∈Mk(N, χ) in terms
of the ideal coefficients [Shi78]:

(5) an(Tmf) =
∑

m+n⊂a

χ∗(a)Nm(mfa)k0−1anma−2(f).
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The Hecke operators satisfy the following relations.

(6) Tpt = TpTpt−1 −Nm(p)k0−1χ∗(p)Tpt−2 and Tnm = TnTm if (n,m) = 1.

Let F gal(χ) denote the compositum of F gal and the cyclotomic field in which χ0 is valued. We can think
of the components of k as being indexed by the real embeddings of F . Then, Gal(F gal/Q) acts on k by
permuting the components, and we write F ′ ⊂ F gal for the field fixed by automorphisms of F gal that preserve
k ([Shi78, Proposition 1.4]).

We say that a set of linear operators {T} acting on a finite-dimensional complex vector space V can be
defined over a field K if there is a choice of basis of V such that in this basis, the matrix of every operator
in {T} has entries in K.

Theorem 2.2 (Implicit in [Shi78]). The Hecke operators {Tp} acting on Mk(N, χ) can be defined over F ′(χ)
when k is paritious.

Remark. In many practical settings – for example when F is a quadratic or Galois cubic field and χ is trival
or quadratic – we have F ′(χ) = F . One can also check that F ′(χ) is the smallest possible coefficient field of
a Hilbert modular form in Sk(N, χ) can be defined, as the coefficient field will always contain the nebentypus
field and by Equation (2) must contain ϵk/2 for any ϵ ∈ Z×

F .

For any M ⊂ ZF and D ⊂ ZF , there is a degeneracy map

(7) ιD : Mk(M, χ) ↪→Mk(MD, χ)

given by

(8) an(ιD(f)) :=

{
anD−1(f) D|n
0 otherwise.

We write Mk(N, χ)
new to denote the complement in Mk(N, χ) of the sum of the images of the degeneracy

maps ιD over all D|N such that cond(χ)|ND−1. Forms in Mk(N, χ)
new are called newforms. The following

is a Hilbert modular forms analogue of Atkin-Lehner-Li theory for modular forms, and is proved in the same
way.

Theorem 2.3. There is a decomposition

Mk(N, χ) ∼=
⊕
M|N

cond(χ)|M

⊕
D|NM−1

ιD(Mk(M, χ)new).

When k is paritious, we define the Hecke algebra T := TF ′(χ)(N, k, χ) to be the commutative F ′(χ)-
algebra generated by the Hecke operators {Tm}m⊂ZF

acting on Mk(N, χ). The “anemic” Hecke algebra
T0 := (TF ′(χ))0 is defined similarly but is generated by the Hecke operators {Tm : (m,N) = 1}. By the same
argument as is used to prove Theorems 5.5.3 and 5.8.2 of [DS05], one can check that T0 acts semisimply on
Mk(N, χ) and that T acts semisimply on Mk(N, χ)

new. Therefore, Mk(N, χ)
new has a basis of T-eigenforms.

We say that a T-eigenform f is normalized if the ideal coefficient a(1)(f) is 1. By Equation (5), the coefficient
ap(f) of a normalized eigenform f is exactly the eigenvalue of Tp on f .

Proposition 2.4 ([Shi78, Proposition 2.8]). Let f ∈ Sk(N, χ) be a normalized eigenform with k paritious.
Then, Q({ap(f)}) is a finite extension.

Proposition 2.5 (Special case of [Shi78, Proposition 2.6]). If f ∈ Sk(N, χ) and τ ∈ Aut(C) fixes F ′(χ),
then

τf(z) :=
∑

ν∈d−1
F,>0

τ(aν(f)) exp

2πi
∑
j

ι(νj)zj


is an element of Sk(N, χ). Furthermore, if f is a T0 or T-eigenform, then so is τf .

In Section 5, we give different proofs of Theorem 2.2, Proposition 2.4, and Proposition 2.5.
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3. Computing spaces of Hilbert modular forms of paritious weight

Our goal in this section is to compute a basis of Sk(N, χ) (i.e. produce explicit q-expansions of forms
spanning the space). Following the approach of [DV21], we proceed as follows:

(1) Use Theorem 3.1 to compute “full” Hecke matrices for the Tp action on Sk(M, χ) for M ⊂ ZF such
that cond(χ)|M and M|N.

(2) Use these matrices and rationality properties of the Hecke algebra T to cut out a subspace Vf for
each Galois conjugacy classes of newforms.

(3) Use Equation (6) to compute matrices for {Tm}, where m ⊂ ZF ranges over all ideals, from the
matrices {Tp}.

(4) Use properties of T to compute q-expansions with coefficients in F ′(χ) spanning each Vf .
(5) Use Theorem 2.3 and Equation (8) to assemble a basis for Sk(N, χ) over F ′(χ).

A key point is that throughout, all our computations are over the field F ′(χ). In particular, the field we
work over is independent of which Hecke operators Tp we are working with. In practice, we want to compute
the q-expansions of a basis up to some precision, and as such only compute finitely many Hecke operators
{Tp}. We suppress such considerations in what follows.

3.1. An algorithm for computing Sk(N, χ) for k paritious.

3.1.1. Compute “full” Hecke matrices.

Theorem 3.1. There is an algorithm, which given a weight k ∈ Zn≥2, a level N ⊂ ZF , a finite order
nebentypus χ of modulus N, and a prime p, returns a matrix for the Hecke operator Tp on Sk(N, χ) over
F ′(χ) in a basis independent of p.

In Section 4, we will prove Theorem 3.1 by computing the Hecke action on a more tractable space that is
isomorphic as a Hecke module to Sk(N, χ). Applying Theorem 3.1 to every M|N such that cond(χ)|M, we
can compute matrices for the action of Tp on Sk(M, χ) for any M and any p.

3.1.2. Restrict the Hecke matrices to Galois orbits of newforms. We first want to use the full Hecke matrices
to identify the subspace Sk(N, χ)new ⊂ Sk(N, χ). Let M|N be such that cond(χ)|M and choose D|NM−1.
One can check from Equation (5) and Equation (8) that the subspaces ιD(Sk(M, χ)new ⊂ Sk(M, χ) in The-
orem 2.3 are closed under the action of T0 := (TF ′(χ))0 and furthermore that Sk(M, χ)new is isomorphic
as a T0-module to ιD (Sk(M, χ)new). For a level M ⊂ ZF and a Hecke operator T ∈ T, let µM,Tp

be the
squarefree part of the characteristic polynomial of Tp acting on Sk(M, χ). Because T0 acts semisimply on
Sk(N, χ), we deduce the following.

Proposition 3.2 ([DV21]).
Sk(N, χ)

new =
⋂

p⊂ZF prime
p∤N

⋂
M

imµM,Tp
,

where the intersection is over M such that M|N and cond(χ)|M.

Using Proposition 3.2, we can restrict our full Hecke matrices to the new subspace – if we compute at the
smaller levels first, we can compute the dimension of Sk(N, χ)new using Theorem 2.3, and can compute the
intersection of Proposition 3.2 at various primes until we reach the correct dimension.

Because T := TF ′(χ) acts on Sk(N, χ)new as a finite commutative F ′(χ)-algebra, TF ′(χ)
∼=
∏
f Kf for field

extensions Kf/F
′(χ). We then have the decomposition

(9) Sk(N, χ)
new ∼=

⊕
f

Vf .

One can check that the elements of HomF ′(χ)(T,C) are in bijection with normalized Hecke eigenforms.
Because any such algebra homomorphism is an element of HomF ′(χ)(Kf ,C) for some f , we deduce that
the sum in Equation (9) is indexed by representatives of Galois orbits of newforms under τ ∈ AutF ′(χ)(C).
Proposition 2.4 and Proposition 2.5 follow from this.

Because T acts semisimply on Mk(N, χ)
new and is generated by a single element T ∈ T (not necessarily

a Tp, but some element nonetheless), we have the decomposition

Mk(N, χ)
new ∼= ⊕µ′|µ(N,T ) kerµ

′
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where the sum ranges over the factors µ′ of µ(N, T ) over F ′(χ). Since T is a generator for T, the factors µ′

are in bijection with the factors Kf of T and the subspaces kerµ′ are in bijection with the subspaces Vf .

3.1.3. Produce matrices of {Tm} from the matrices of {Tp}. For each Vf , we can apply the identities in Equa-
tion (6) to compute Tm|Vf

for any ideal m ⊂ ZF . In practice, we want to compute {Tm|Vf
: m ⊂ ZF ,Nm(m) ≤

X} for some bound X. Using the identities in Equation (6), and processing the ideals m in order of the
number of prime factors of m (with multiplicity), we can use dynamic programming to compute {Tm|Vf

}
with one additional matrix multiplication per ideal m.

3.1.4. Compute q-expansions of an F ′(χ)-basis of each newform orbit. Each Vf is a simple T-module on
which T acts as a field extension Kf/F

′(χ). This Kf is exactly the coefficient field of the newform orbit
representative f). Let T be a generator of T|Vf

. Letting d := [Kf : F ′(χ)], given any g ∈ Vf , {T jg}d−1
j=0 is

a basis for Vf . We will take g :=
∑
τ∈HomF ′(χ)(Kf ,C)

τf . Then, g has coefficients in F ′(χ). The following

lemma lets us compute the ideal coefficients of {T jg}d−1
j=0 .

Lemma 3.3. an(T jg) = tr(T jTn).

Proof.

tr(T jTn) =
∑
τ

λT (fτ )
jan(

τf) = an

(∑
τ

λT (fτ )
j(τf)

)
= an(T

jg).

□

Because the coefficients of g are in F ′(χ), we can use Lemma 3.3 to produce q-expansions {T jg}d−1
j=0

spanning Vf with coefficients in F ′(χ). In particular, we can do this directly from the matrix T ∈ T, which
has entries in F ′(χ). As such, all of our computation can be performed over the field F ′(χ) – we never
actually work with the coefficient fields Kf/F

′(χ).

3.1.5. Assemble the bases of newform orbits to produce a basis for Sk(N, χ). Repeat the previous three steps
to produce the q-expansions of a basis of Sk(M, χ) for all M|N such that cond(χ)|M. Applying Theorem 2.3
with the degeneracy maps as in Equation (7), we obtain the q-expansions of a basis of Sk(N, χ) with
coefficients in F ′(χ).

3.2. Forms of partial weight one. Theorem 3.1 does not let us access Hecke matrices on spaces of Hilbert
modular forms of partial weight one. For these, we can apply the Hecke stability method of Schaeffer [Sch15]
(see also [MS15,ABB+26] for the extension to Hilbert modular forms). Concretely, choosing an Eisenstein
series E ∈Ml(N, ψ) nonvanishing at the cusp at infinity, Sk(N, χ) is contained in the Hecke stable subspace
U of the space of meromorphic modular quotients V := Sk+l(N,χψ)

E . We can efficiently compute V using
the fast multiplication and division algorithms in [ABB+26], and can compute U from V using the formula
in Equation (5). In the case of classical modular forms, Schaeffer proves that Sk(N, χ) = U , i.e. that forms
in U are in fact holomorphic. We expect his proof to generalize to the Hilbert modular setting, but do not
assume this. Instead, we can compute U , and verify that forms f ∈ U are holomorphic by checking that
their squares (which have weight in Zn≥2) lie in S2k(N, χ

2) and are hence holomorphic.

4. Quaternionic modular forms and computing matrices for Tp

In this section, we will prove Theorem 3.1 by establishing a Hecke module isomorphism between Mk(N, χ)
and an appropriate space of quaternionic modular forms on which Hecke matrices can be computed explicitly.
In this section, we follow the framework (and where possible, the notation) of Section 7 of [DV13]. Our
presentation is also substantially influenced by [Mar20] and [Dem07].

Let B/F be a quaternion algebra with discriminant disc(B). Let r (resp. s) be the number of infinite
places split (resp. ramified) in B. Fix a level M ⊂ ZF such that (M, disc(B)) = (1) and a finite order Hecke
character χ with cond(χ)|M. Let ZM :=

∏
p|M Zp. Given a splitting ιM : B ↪→M2(

∏
v|M Fv), we define the

Eichler order of level M,

O0(M) := {x ∈ B : ιM(x) =

(
a b
c d

)
∈M2(ZM), c ∈ MZM}.
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To avoid clutter, we write O := O0(M) when there is no ambiguity. For x̂ ∈ B̂× such that

(10) (x̂)v|M =

(
a b
c d

)
∈M2(ZM)

we define χ0(x̂) := χ0(d). Similarly, if the image of x ∈ B̂× under the diagonal embedding to B̂× is a x̂
satisfying Equation (10), we define χ0(x) := χ0(x̂). Choose a splitting

B× ↪→
∏
v|∞

v ramified

B×
v ↪→ GL2(C)s.

Precomposing with this splitting, the right GL2(C)s-representation

(11) Wk(C) :=
⊗
v|∞

v ramified

(
Symkv−2 C2 ⊗ (det)

(k0−kv)/2
)

gives rise to a representation of B× over C. In practice, we actually pick a number field K containing F gal

and splitting B, and do all our computation over the compositum K(χ) containing K and the field of values
of χ.

Definition 4.1. A quaternionic modular form over B× of level M and nebentypus χ is a function

ϕ : Hr × B̂× −→Wk(C)

such that
(1) For any γ ∈ B×

+ ,

ϕ(z, x̂) =

r∏
i=1

det γ
ki/2
i

j(γi, zi)ki
ϕ(γz, γx̂)γ .

(2) For any û ∈ Ô×,
ϕ(z, x̂û) = χ0(û)ϕ(z, x̂).

(3) ϕ is holomorphic in the first variable.
The space of quaternionic modular forms over B× of level M and nebentypus χ is denoted MB

k (M, χ).

As in Section 2.4, MB
k (M, χ) contains a subspace of quaternionic cusp forms SBk (M, χ). When B/F is a

quaternion division algebra (i.e. not M2(F )), SBk (M, χ) = MB
k (M, χ) unless r = 0 and k is parallel. Even

if SBk (M, χ) ⊊ MB
k (M, χ), it is easy to compute and understand the complement of SBk (M, χ). As such,

computing Hecke matrices on MB
k (M, χ) is essentially equivalent to computing Hecke matrices on SBk (M, χ).

To make use of the conditions in Definition 4.1, it will be helpful to understand the double coset space
B×

+\B̂×/O×.

Theorem 4.2 ([Voi21, 28.4.3, 27.7.1, 28.5.5]).
(1) The map

F : B×
+\B̂×/Ô× // ClsO

B×
+ α̂Ô× � // α̂Ô ∩B =: Iα

is a bijection.
(2) The map

(12) nrd: B×
+\B̂×/O× −→ F×

+ \F̂×/nrd(Ẑ×
F )

∼= Cl+F

is a surjection, and if B is indefinite, then it is a bijection.

Let H be the the cardinality of this double coset space, and pick representatives {α̂1, . . . , α̂H} ⊂ B̂×.
Given ϕ ∈MB

k (M, χ) and h ∈ [H], we can define a function

ϕh : Hs // Wk(C)
z
� // f(z, α̂h)

.
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For any function ϕh : Hr →Wk(C), we define an action

(13) ϕh|kγ :=
(det γ)k/2

j(γ, z)k
ϕh(γz)

γ .

Let Oh := α̂hÔα̂−1
h ∩B, and define

(14) MB
k (M, χ;h) := {ϕh : Hr −→Wk(C) : ϕh|kγ = χ0(α̂

−1
h γ−1α̂h)ϕh for γ ∈ O×

h }.

Note that α̂−1
h γ−1α̂h ∈ Ô×, so it makes sense to evaluate χ0 on it.

Lemma 4.3. The map

Φ: MB
k (M, χ) //

⊕H
h=1M

B
k (M, χ;h)

ϕ � // (ϕh)h∈[H]

is an isomorphism.

Proof. The map Φ is well-defined because for γ ∈ O×
h ,

(ϕh|kγ)(z) =
(det γ)k/2

j(γ, z)k
ϕ(γz, α̂h)

γ = ϕ(z, γ−1α̂h) = ϕ(z, α̂h(α̂
−1
h γ−1α̂h)) = χ(α̂−1

h γ−1α̂h)ϕh(z).

It is an isomorphism because by Definition 4.1, knowing ϕ(z, α̂h) for all z ∈ Hr and h ∈ [H] is enough to
recover ϕ on all of Hr × B̂×. □

We now define Hecke operators on MB
k (N, χ). Given a prime ideal p ⊂ ZF , let π̂ ∈ B̂× be an element

which at places v ̸= p is 1 and at v = p is an element whose reduced norm is a uniformizer for Fp. The choice
of π̂ does not affect the double coset Ô×π̂Ô×, which is all that will matter. Equivalently, we may choose
π̂ such that nrd(π̂)ẐF ∩ F = p. Let P be Nm(p) + 1 if p ∤ N and Nm(p) otherwise. There exist elements
{π̂j}Pj=1 ⊂ B̂× such that

Ô×\Ô×π̂Ô× =
⊔
j

Ô×π̂j .

For ϕ ∈MB
k (M, χ), we define the Hecke operator

(15) (Tpϕ)(z, x̂) :=
∑
j

ϕ(z, x̂π̂−1
j )χ0(π̂j).

The right-hand side of Equation (15) is independent of the choices of π̂j . We can ask how the Hecke operator
interacts with the isomorphism of Lemma 4.3.

Lemma 4.4. There exist:
(1) A function j∗ : [H] → [H] for every j ∈ [P ];
(2) Elements {

ϖj,h ∈ α̂j∗(h)Ô×π̂jα̂
−1
h ∩B×

+

}
j∈[P ]
h∈[H]

,

where ϖj,h is well-defined up to multiplication on the left by O×
j∗(h);

such that

(16) (Tpϕ)h(z) =

P∑
j=1

χ0(α̂
−1
j∗(h)ϖj,hα̂h)(ϕj∗(h)|kϖj,h)(z).

Proof. By strong approximation (Theorem 4.2), for all h ∈ [H] and j ∈ [P ], there exist ϖj,h ∈ B×
+ ,

j∗(h) ∈ [H], and û ∈ Ô× such that α̂hπ̂−1
j = ϖ−1

j,hα̂j∗(h)û. Applying this to Equation (16),

(17)

(Tpϕ)h(z) =

P∑
j=1

ϕ(z,ϖ−1
j,hα̂j∗(h)û)χ0(π̂j) =

P∑
j=1

χ(ûπ̂j)(ϕj∗(h)|kϖj,h)(z) =

P∑
j=1

χ(α̂−1
j∗(h)ϖj,hα̂h)(ϕj∗(h)|kϖj,h)(z).
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If for some j and h we have ϖ−1
j,hα̂j∗(h)û = (ϖ′

j,h)
−1α̂j∗(h)û

′, then ϖ′
j,h = γϖj,h for some γ ∈ O×

j,h.
By Equation (14), replacing ϖj,h with ϖ′

j,h = γϖj,h does not change the summand in Equation (17). □

[DV13, Equation 7.24] describes, in the case of trivial nebentypus, how we can avoid doing computation
with adeles by replacing the double coset representatives {α̂h}h∈[H] with the corresponding right O-ideals
{Ih := α̂hÔ ∩ B} (representatives of the corresponding right ideal classes in O) and computing the ϖj,h in
terms of these ideals. Similarly, we would like to evaluate the expression χ0(α̂

−1
j∗(h)ϖj,hα̂h) in Equation (16)

without working adelically. By weak approximation [Voi21, Proposition 28.7.3(b)], we may choose {α̂h} such
that (α̂h)p ∈ O×

p for all p | N and all h ∈ [H]. Then, ϖj,h ∈ α̂j∗(h)ûπ̂jα̂
−1
h ∈ O and

χ0(α̂
−1
j∗(h)ϖj,hα̂h) = χ0(α̂

−1
j∗(h))χ0(ϖj,h)χ0(α̂h).

With these choices of {α̂h}, let Tp be the matrix of the Hecke operator on
⊕

hM
B
k (M, χ;h) defined

by Equation (16), and let T ′
p be the matrix defined by Equation (16) after replacing χ0(α̂

−1
j∗(h)ϖj,hα̂h) with

χ0(ϖj,h). Let

D := diag

. . . , χ0(α̂h), . . . , χ0(α̂h)︸ ︷︷ ︸
dimMB

k (M,χ;h) times

, . . .

 .

Then, Tp = DT ′
pD

−1. Since D is independent of p, the {T ′
p} and {Tp} differ only by a change of basis.

Therefore, we lose nothing by computing {T ′
p} – avoiding any adelic computation – once we have chosen

{α̂h} appropriately.
Let

(18) Vk(C) :=
⊗
v|∞

(
Symkv−2 C2 ⊗ (det)

(k0−kv)/2
)
.

When B is definite, Vk(C) ∼= Wk(C), but when B is indefinite, Vk(C) includes factors from the split places
that Wk(C) does not.

To apply Equation (16) when B is indefinite, we need to be able to compute Equation (13). In practice,
we will only compute SBk (M, χ) when B is split at exactly one infinite place. By the Eichler-Shimura
isomorphism – which generalizes to the setting of Shimura curves and nontrivial nebentypus – for any
h ∈ [H] we have an isomorphism

(19) MB
k (N, χ;h) ∼=

H⊕
h=1

H1(O×
h , Vk(C)⊗ χ).

Remark. Readers who are familiar with the usual Eichler-Shimura isomorphism may be surprised that there
is only one summand on the right-hand-side of Equation (19). The idea is that by working with O×

h instead
of the subgroup O1

h ⊂ O×
h of norm 1 elements, we only see the holomorphic forms. An analogous example in

the setting of modular forms is the isomorphism Mk(1) ∼= H1(GL2(Z), Symk−2 C2). Since we are sweeping
some details under the rug anyways, we felt it would ease the presentation to write the isomorphism this
way. We refer the reader to [GV11] and [ABB+26] for details.

Remark. BecauseB is indefinite and we assume that Cl+F = 1, Theorem 4.2 implies that [H] = 1. Nonetheless,
we describe the Hecke action in slightly more generality than we need to simplify the takeaway later.

Define a Hecke action on (φh)h∈[H] ∈
⊕
H1(O×

h , Vk(C)⊗ χ) by

(20) (Tpφ)h(γ) =

P∑
j=1

χ0(α̂
−1
j∗(h)ϖj,hα̂h)φj∗(h)

(
ϖj,hγϖj′,j∗(h)

)ϖj,h

where the j′ in each summand is the unique element of [P ] such that ϖj,hγϖj′,j∗(h) ∈ O×
j∗(h). With this

Hecke action, one can check that Equation (19) is a Hecke module isomorphism [GV11,DV13,ABB+26].
Now that we have defined the Hecke module structure on MB

k (M, χ) and
⊕

hM
B
k (M, χ;h), we may state

the version of the Jacquet-Langlands correspondence that we will use.
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Theorem 4.5 (Eichler-Shimizu-Jacquet-Langlands (see e.g. Theorem 3.9 of [DV13]). Let N ⊂ ZF be a level,
k ∈ Zn≥2 a weight, and χ a finite-order Hecke character. Let B/F be a quaternion algebra with discriminant
D such that cond(χ)|ND−1. Then, there is a Hecke module isomorphism

SBk (ND−1, χ) ∼= Sk(N, χ)
D9new.

When n is odd, we choose B to be an indefinite quaternion algebra ramified at all but one of the infinite
places. When n is even, we choose B to be a definite quaternion algebra. In either case, we may take B
to be unramified at all finite places, so disc(B) = (1). For such a B, SBk (N, χ) ∼= Sk(N, χ) on the nose
by Theorem 4.5.

These matrices are not a priori defined over F ′(χ), but Theorem 4.5 and Theorem 2.2 imply that we can
always find a basis over which the {Tp} are defined over F ′(χ). Putting everything together, Theorem 3.1 is
proved.

5. Computing spaces of Hilbert modular forms of nonparitious weight

5.1. Fourier coefficients and elemental Hecke operators. In many settings, the ideal coefficients {an}
are the more intrinsic way to think about the coefficients of a Hilbert modular form.

For example, the L-function associated to f , up to twist, is defined on Re(s) > 1 as

(21) L(s, f) =
∑

n⊂OF

an Nm(n)−s =
∏
p

(1− ap Nm(p)−s + χ(p)Nm(p)k0−1−2s).

Many constructions of Hilbert modular forms (e.g. as Eisenstein series, CM forms, base change forms,
etc.) are given naturally as formulas for the {ap}, which can then be converted into a Fourier expansion
using Equation (4). The procedure in Section 3 is in this vein – from the Hecke matrices {Tp}, we produce the
Hecke matrices {Tn}, from these extract the ideal coefficients {an(f)} for f ranging over a basis of Sk(N, χ),
and from these can recover the Fourier coefficients of a basis.

This all works in paritious weight because of Theorem 2.2, which guarantees that the Tp are defined over
F ′(χ). When the weight is nonparitious however, this story breaks down because Theorem 2.2 and Propo-
sition 2.4 do not hold. The field of definition of matrices of the Hecke operator Tp acting on Sk(N, χ) and
(relatedly) the smallest field containing the ideal coefficient ap(f) for a normalized eigenform f ∈ Sk(N, χ)
depend on the prime p when k is nonparitious – this field will generally contain

√
π for any totally positive

generator π of p. In particular, Q({an(f)}) will be infinite. Because in practice we only want to compute
finitely many terms of q-expansions, we could address this issue by working in a very large field containing
the fields of definition of the finitely many {ap} that we want to compute. However, this would be extremely
inefficient at high precisions, and would introduce many potential errors when coercing between different
number fields. We will take a different approach.

The first observation is that while the ideal coefficients of a nonparitious eigenform are not defined over
a number field, the Fourier coefficients will be.

Theorem 5.1 (Proposition 1.3 of [Shi78]). If f ∈Mk(N, χ) is a normalized Hecke eigenform, then Q({aν(f)})
is a finite extension F ′(χ).

One way to think about this is the square root factors in Equation (4) (which are not generally elements
of F gal when k is nonparitious) exactly cancel out the square roots which cause Q({an(f)}) to be infinite
in the first place. Motivated by Theorem 5.1, we will define “elemental” Hecke operators, indexed by totally
positive elements of F . These elemental Hecke operators act on Sk(N, χ) via matrices defined over F ′(χ)
(Theorem 5.8) As such, we may replace the usual Hecke algebra (which only makes sense over Q in general)
with the “elemental” Hecke algebra, the F ′(χ)-algebra generated by the elemental Hecke operators. This
elemental Hecke algebra has all of the nice properties that the usual Hecke algebra has in the paritious case.
Intuitively, just as the usual Hecke algebra realizes the ideal coefficients as eigenvalues, the elemental Hecke
algebra realizes the Fourier coefficients as eigenvalues. This will let us prove Theorem 1.1, and along the
way, provide alternative proofs of Theorem 2.2, Theorem 5.1, Proposition 2.4, and Proposition 2.5.

5.2. Elemental Hecke operators and the elemental Hecke algebra.

Definition 5.2. Let µ be a totally positive generator for m. We define the elemental Hecke operator

(22) Tµ := µ
(k−k0)/2Tm,
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where Tm is defined as in Equation (5).

Pick a totally positive generator δ for the different dF . Let f be a normalized T-eigenform. Combin-
ing Definition 5.2 with Equation (4),

Tµf = µ
(k−k0)/2am(f) = µ

(k−k0)/2(δ−1µ)
(k0−k)/2aδ−1µ = δ

(k−k0)/2aδ−1µ.

Writing f̃ := δ(k−k0)/2f , we see that
Tµf̃ = aδ−1µ(f̃)f̃ .

The eigenvalues of Tµ therefore give the coefficient aδ−1µ of a scalar multiple of the original normalized
eigenform.

Applying Equation (4) to Equation (5), we can produce a formula for the Fourier coefficients of Tπf in
terms of those of f . Writing ,|נ µ, and α for totally positive generators of n,m, and a,

(23) aδ−1נ|(Tµf) =
∑

n+m⊂a

χ∗(a)Nm(a)k0−1αk−k0 aδ−1נ|µα−2(f).

Lemma 5.3. The elemental Hecke operators {Tπ} on Sk(N, χ) are defined over F ′(χ) for any k ∈ Zn≥2.

Proof. By Theorem 4.5, it suffices to show this result for the Hecke matrices on SBk (N, χ).
Let ρ : B× → End(Vk(C)) be the representation associated to Vk(C) (Equation (18)). If B is definite,

then one can show from Lemma 4.4 that the Hecke operator Tp on SBk (N, χ) acts by an [H] × [H] block
matrix where each block is a linear combination (with coefficients in Q(χ)) of matrices ρ(ϖ) for various
ϖ ∈ {ϖj,h}j∈[P ]

h∈[H]

. If B is indefinite, then the situation is more complicated, but again we end up with

a block matrix where each block consists of a linear combination (with coefficients in Q(χ)) of products
ρ(γ)ρ(ϖj,h), for γ ∈ B1.

As such, the matrices for the action of Tp on MB
k (M, χ) can be defined over a field containing the field of

definitions of χ, ρ(γ) for γ ∈ B1, and {ρ(ϖj,h)}j,h.
When k is paritious, the exponents {k0−kv2 }v|∞ in the determinant factors of Vk(C) are integral. Therefore,

on γ ∈ B×,
⊗

v nrd
(k0−kv)/2 evaluates to an element of F when k is paritious. Even when k is nonparitious,

if γ ∈ B1, then the determinant factors are all trivial. As such, the obstruction to the {Tp} being defined
over a finite extension is the field of definition of {ρ(ϖj,h)}j,h. and in particular that under

⊗
v nrd

(k0−kv)/2,
{ϖj,h} will map to some expression involving square roots.

To remedy this, define

V ′
k(C) :=

⊗
v|∞

Symkv−2 C2 = Vk(C)⊗ nrd
k−k0/2.

By surjectivity of the reduced norm map to Cl+F = 1 (Theorem 4.2), we may choose double coset representa-
tives {α̂h}Hh=1 for B×

+\B̂×/Ô× such that nrd(α̂) ∈ Ẑ×
F . With these choices in hand, Lemma 4.4 tells us that

ϖj,h ∈ α̂j∗(h)Ô×π̂jα̂
−1
l ∩B×

+ . Therefore, nrd(ϖj,h) ∈ nrd(α̂j∗(h))nrd(π̂j)nrd(α̂
−1
l ) ∩ F ∈ p. Lemma 4.4 also

tells us we can multiply ϖj,h on the left by O×
j∗(h) without affecting Tp. Because ϵ ∈ O×

j∗(h) for any ϵ ∈ Z×
F

and Cl+F = 1, we can always realize Tp using ϖj,h such that nrd(ϖj,h = π for any totally positive generator
π of p. Evaluated on {ϖj,h}, the determinant factor in Vk(C) is exactly πk0−k/2. It follows that in the basis
given by these {α̂l}, Tπ is given by the formulas in Lemma 4.4 but with the representation Vk(C) replaced
by V ′

k(C). The point is that by paying the cost of keeping track of the totally positive generator π of p, we
have gotten rid of the determinant factors that were preventing the {Tp} from being defined over a finite
extension.

In particular, for any K over which the representation V ′
k(C) of B× can be defined, the elemental Hecke

operators {Tπ} can be defined over K(χ). We want to show that the {Tπ} can be defined over F ′(χ).
Start with an Galois extension K/Q that contains F gal and splits B. The representation V ′

k(C) can be
certainly defined over K.

Claim 5.4. For any such K, there exists a subfield K ′ ⊂ K such that V ′
k(C) can be defined over K ′ and

K ′ ∩ F gal = F ′.
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Assuming the claim for now, choose two such extensions K1 and K2 such that K1 ∩K2 = F gal. By the
claim, there exist subextensions K ′

1 and K ′
2 such that K ′

1∩F gal = K ′
2∩F gal = F ′. Therefore, K ′

1∩K ′
2 = F ′.

By the claim and the preceding discussion, the matrices of the action of the {Tπ} can be defined over
K ′

1(χ) and K ′
2(χ). Hence, the characteristic polynomials of {Tπ} – which are independent of the choice

of basis – must be defined over K ′
1(χ) ∩ K ′

2(χ) = F ′(χ). Because the Hecke algebra is commutative, the
characteristic polynomials of {Tπ} being defined over F ′(χ) implies that the matrices {Tπ} can themselves
be descended to F ′(χ) [?, Chapter 12].

We conclude by sketching a proof of the claim.
Given any automorphism σ ∈ Gal(K/Q) fixing the weight k, we can define aK-semilinear map Jσ : V ′

k(C) →
V ′
k(C) that commutes with the action of B×. The maps Jσ are multiplicative in σ ∈ Gal(K/Q), so they

give us a K-semilinear representation of a subgroup H ⊂ Gal(K/Q). The fixed points of this semilinear
representation are a vector space over the subfield K ′ := KH . Because H contains lifts of the automorphisms
in Gal(F gal/F ′), K ′ ∩ F gal = F ′.

□

Remark. We could have proved Theorem 5.8 in other ways. Avoiding Jacquet-Langlands entirely, we could
have argued with Hecke operators on Hn(Γ0(N), Vk(C) ⊗ χ), arguing that these operators are defined over
F ′(χ) and that the projectors onto the Hecke submodule corresponding to Sk(N, χ) (which is the subspace

fixed by the action of matrices of the form
(
ϵ

1

)
for ϵ ∈ Z×

F ) are also defined over F ′(χ). This approach

has the advantage of not needing to deal with a field splitting B. We expect that it should be possible to
give an argument using coherent cohomology, thinking of Hilbert modular forms as global sections of some
automorphic line bundle. This approach has the advantage of treating partial weight one and higher weight
forms uniformly. However, incorporating the determinant twists into the line bundle (and in particular,
dealing with "square roots") seems subtle, and we elected to avoid these issues.

Applying Equation (22) to Equation (6), we find

(24) Tπt = TπTπt−1 − πk−1χ∗(p)Tπt−2 and Tנ|µ = Tנ|Tµ if ,|נ) µ) = 1.

Definition 5.5. The elemental Hecke algebra, Telem := Telem
F ′(χ), is the F ′(χ) algebra generated by the {Tπ}.

When k is paritious, Telem
F ′(χ)

∼= TF ′(χ), and even when k is nonparitious, Telem
Q

∼= TQ. T-submodules (resp.
T-eigenforms) are the same as Telem-submodules (resp. Telem-eigenforms).

For a given totally positive generator δ of dF , we say that a Telem-eigenform f is δ-normalized if
aδ−1(f) = 1.

Lemma 5.6. For Telem the elementary Hecke algebra on Sk(N, χ) for k ∈ Zn≥2, there is a bijection

Φ:
{
δ-normalized Telem eigenforms

}
// HomF ′(χ)9alg(Telem,C)

f � // (T 7−→ aδ−1(Tf))
.

The map Φ(f) sends Tµ to the coefficient aδ−1µ(f), and the field extension of F ′(χ) generated by the image
of Φ(f) is exactly the extension generated by the coefficients of f .

Proof. For a δ-normalized eigenform f , aδ−1(Tµ(f)) = aδ−1µ(f). The proof of Lemma 5.6 is then the same
as that of the analogous fact for classical modular forms. □

This proves finiteness of the extension Q({aν(f)}) for f a δ-normalized eigenform.
Because Telem is a finite commutative F ′(χ)-algebra, there exist field extensions Kf/F

′(χ) such that
Telem ∼=

∏
f Kf . As in Section 3.1, we can write Sk(N, χ)new ∼=

⊕
f Vf where each Vf is an irreducible

Telem-submodule on which Telem acts by Kf/F
′(χ). Indeed, because HomF ′(χ)9alg(Telem,C) is preserved by

post-composition with automorphisms of C fixing F ′(χ), it follows that the sum is indexed by Galois orbits
of newforms.

We can then obtain a basis of Vf defined over F ′(χ) exactly as in Section 3.1, by taking the orbit of a
trace form g ∈ Vf under some generator of Telem|Vf

. We can replace Lemma 3.3 with
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(25) aν(T
jg) = tr(T jTν).

We want to show that all of Sk(N, χ) (not just the new subspace) has a basis over F ′(χ). Applying Equa-
tion (4) to Equation (7), and writing ξ for a totally positive generator of D, we find

aν(ιD(f)) = ξ
(k−k0)/2aνξ−1(f).

Because our aim is to produce a basis for Sk(N, χ), we do not care about multiplicative factors. As such we
can define ι′ξ(f) by aν(ι′D(f)) := aνξ−1(f). The image of ι′d⊗C is the same as the image of ιd⊗C, so it does
not affect the complex space we produce in the end.

Theorem 5.7. The space Sk(N, χ) has a basis over F ′(χ).

Proof. First, assume that k ∈ Zn≥2. We have

(26) Sk(N, χ) ∼=
⊕
M|N

⊕
D|NM−1

⊕
newform orbits f

of level M

ι′ξ(Vf ),

where in the summand, ξ is a totally positive generator of D. As noted above, each Vf has a basis of forms
over F ′(χ), and if g ∈ Vf has coefficients in F ′(χ), so does ι′ξ(g).

Suppose instead that k is of partial weight 1. Choose a weight l ∈ Zn≥2 and nebentypus ψ such that
Sl(N, ψ) contains a set of forms g1, . . . , gd with coefficients in F ′(χ) with no common zeroes.

F : Sk(N, χ) // Sk+l(N, χψ)

f � // (fg1, . . . , fgd)

We claim that the image of F is exactly the subspace of h = (h1, . . . , hd) ∈ Sk+l(N, χψ)
d where gihj = gjhi

for all i, j ∈ [d]. For any f ∈ Sk(N, χ), F (f) is in this subspace. Conversely, given h in the subspace, hi

gi

is independent of i. It is holomorphic because for any z ∈ H, vz(gi) > 0, vz(gj) = 0 by assumption and so
vz(hi) = vz(hj) + vz(gi) ≥ vz(gi).

We already know that Sk+l(N, χψ) has a basis over F ′(χ), and we’ve just shown that Sk(N, χ) can be
identified with a subspace of Sk+l(N, χψ)d cut out by equations in F ′(χ). Therefore, Sk(N, χ) also has a
basis of q-expansions over F ′(χ). □

Remark. We could have also argued in the partial weight one case assuming that Sk(N, χ) is the Hecke
stable subspace of a space of modular quotients with a basis over F ′(χ). Since the Hecke operators are
given by Equation (23), the Hecke stable subspace also has a basis of forms over F ′(χ). However, as noted
in Section 3.2, because Schaeffer’s methods have not been generalized to the Hilbert modular setting, this
would not give an unconditional proof.

Remark. Theorem 5.7 is tight. The field of coefficients Kf of f ∈ Sk(N, χ) always needs to include the field
of definition of χ. Because aϵν(f) = ϵk/2aν(f), Kf also needs to include ϵk/2 for ϵ ∈ Z×

F,>0. Picking a unit
ϵ such that Q(ϵ) = F , we deduce that Kf contains F ′. As discussed earlier, totally positive units in F are
squares since Cl+F

∼= ClF . s such, ϵk/2 is an element of F – otherwise, Kf would need to include square roots
of some totally positive units.

Theorem 5.8. The elemental Hecke operators {Tπ} on Sk(N, χ) are defined over F ′(χ) for any k ∈ Zn≥1.

Proof. If k ∈ Zn≥2, the result follows from Lemma 5.3. Otherwise, we still know that Sk(N, χ) has a basis
of forms with coefficients in F ′(χ) by Theorem 5.7. The elemental Hecke operators on Sk(N, χ) are given
by Equation (23), and in particular Tπf has coefficients in F ′(χ) if f does F ′(χ). It follows that in this
basis, Tπ is given by a matrix with entries in F ′(χ). □

From this and Lemma 5.6, we can use the arguments that we used in the Zn≥2 case to deduce the following
theorems.

Proposition 5.9. Let f be a δ-normalized Telem eigenform in Sk(N, χ) for any k ∈ Zn≥1. The extension
Q({aν(f)}) is finite.
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Proposition 5.10. If f ∈ Sk(N, χ) with k ∈ Zn≥1 and τ is an automorphism of C fixing F ′(χ), then

τf(z) :=
∑

ν∈d−1
F,>0

τ(aν(f)) exp

2πi
∑
j

ι(νj)zj


is an element in Sk(N, χ). Furthermore, if f is a Hecke eigenform, then so is τf .

Observe that Theorem 5.8, Proposition 5.9, and Proposition 5.10 are strict strengthenings of Theo-
rem 2.2, Proposition 2.4, and Proposition 2.5.

5.3. Computing spaces of forms in nonparitious weight. With the theory of Section 5.2 in hand, we
can compute spaces of nonparitious forms with k ∈ Zn≥2 by replacing Tp with Tπ (for some totally positive
generator π of p) and an with aν everywhere. By doing this, we are able to work with spaces and matrices
over F ′(χ) instead of dealing with field extensions depending on p. We walk through the steps of Section 3
and highlight the modifications that need to be made.

(1) Compute “full” Hecke matrices: To compute Tπ, we repeat the procedure in Section 4, choosing
{ϖj,h} in Lemma 4.4 whose norms are all equal to π and replacing Vk(C) with V ′

k(C) (i.e. forgetting
about the determinant factors). The determinant factor in Vk(C) for these {ϖj,h} is simply a twist
by πk0−k/2 (independent of j and h). As Tp = πk0−k/2Tπ, removing the determinant factors lets us
produce a matrix for Tπ.

(2) Restrict the Hecke matrices to Galois orbits of newforms: Because each Tπ is a rescaling
of Tp, we can replace Tp with Tπ in Proposition 3.2 without changing the subspace we produce. As
discussed in Section 5.2, the elemental Hecke algebra still decomposes as a product of fields Kf ,
so Equation (9) still holds. Therefore, we can decompose the new subspace into kernel of factors of
the characteristic polynomial of any generator T ∈ Telem|Sk(N,χ)new .

(3) Produce matrices for Tµ from the matrices for Tπ: We can compute these efficiently us-
ing Equation (24) and dynamic programming.

(4) Compute q-expansions of an F ′(χ)-basis of each newform orbit: This was discussed in the
proof of Theorem 5.7. The key point is that we use Equation (25) in lieu of Lemma 3.3.

(5) Assemble the bases of newform orbits to produce a basis for Sk(N, χ): This was discussed
in the proof of Theorem 5.7, and can be done using Equation (26).

In the case of partial weight one, the methods of Section 3.2 can be applied almost verbatim. We are able
to compute bases of spaces in weights Zn≥2 as just described, and compute Hecke operators on the space of
modular quotients using Equation (23) instead of Equation (5).

6. Examples

The codebase can be found here.
For now, we leave the reader with the following two examples.

6.1. A weight (4, 3) space over Q(
√
2). In this subsection, we reproduce a computation of [DLP19].

Let k := (4, 3), N = (
√
2+ 3)|7, and χ the nontrivial ray class character unramified away from N and the

infinite places. Then, Sk(N, χ) is two-dimensional. Choosing the generator δ := −2
√
2 + 4, the coefficients

of one of the two conjugate δ-normalized eigenforms in this space are given in Table 1. The coefficients of f
lie in K = Q[x]/(x4 + 24x2 + 46).

We give a snippet of the code that we used to compute Table 1 – it runs in under 7 seconds on a single
core of an 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30 GHz (my laptop). Of course, there is a lot going on
under the hood! Nonetheless, we feel that one of the merits of this work is that it makes such computations
accessible even to users who do not wish to get their hands dirty.

// specify the field , level , weight , and nebentypus
F := QuadraticField (2);
ZF := Integers(F);
k := [4, 3];
N := Factorization (7*ZF )[1][1];

https://github.com/abhijit-mudigonda/hilbertmodularforms/tree/def-nonpar-2
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Table 1. Some Fourier coefficients of an eigenform in Sk(N, χ) for k, N, and χ given above.
Here, π is a totally positive generator of a prime ideal p, δ is the chosen generator for the
different of ZF , and α is a generator for the coefficient field K = Q[x]/(x4+24x2+46) such
that α2 = 7

√
2− 12.

Nm(p) π aπδ−1(f)

2 −
√
2 + 2 −α

7 −3
√
2 + 5 1

7 (−2α3 + 6α2 − 31α− 5)

7 −
√
2 + 3 1

7 (α
3 + 26α)

9 3 1
7 (3α

3 + 106α)

17 −2
√
2 + 5 1

7 (−8α2 − 222)

17 −4
√
2 + 7 1

7 (3α
3 + 120α)

23 −
√
2 + 5 1

7 (26α
2 + 564)

23 −7
√
2 + 11 1

7 (36α
2 + 26)

25 5 1
7 (2α

3 − 74α)

31 −5
√
2 + 9 1

7 (13α
3 + 30α)

31 −3
√
2 + 7 1

7 (−30α2 − 122)

41 −8
√
2 + 13 1

7 (−90α2 − 562)

41 −2
√
2 + 7 1

7 (−6α3 − 338α)

47 −11
√
2 + 17 1

7 (122α
2 + 78)

47 −
√
2 + 7 −9α3 − 164α

71 −7
√
2 + 13 1

7 (−74α3 − 930α)

71 −5
√
2 + 11 1

7 (−2α3 − 530α)

73 −2
√
2 + 9 24α2 + 302

73 −12
√
2 + 19 1

7 (−27α3 − 198α)

79 −15
√
2 + 23 1

7 (−46α3 − 132α)

79 −
√
2 + 9 1

7 (47α
3 + 942α)

89 −4
√
2 + 11 1

7 (−206α2 − 2262)

89 −10
√
2 + 17 1

7 (65α
3 + 1228α)

97 −8
√
2 + 15 1

7 (−234α2 + 734)

97 −6
√
2 + 13 1

7 (51α
3 + 1550α)

103 −13
√
2 + 21 1

7 (150α
2 + 1296)

103 −3
√
2 + 11 1

7 (114α
3 + 2110α)

113 −16
√
2 + 25 1

7 (46α
3 + 160α)

113 −2
√
2 + 11 1

7 (−10α3 − 316α)
121 11 1

7 (170α
2 + 4602)

127 −7
√
2 + 15 1

7 (96α
2 + 130)

127 −9
√
2 + 17 1

7 (−272α2 − 660)

137 −4
√
2 + 13 1

7 (−10α2 − 50)

137 −14
√
2 + 23 1

7 (−74α2 − 90)

151 −3
√
2 + 13 1

7 (172α
2 − 162)

151 −17
√
2 + 27 1

7 (114α
2 − 1404)

167 −23
√
2 + 35 1

7 (172α
3 + 902α)

167 −
√
2 + 13 1

7 (−398α2 − 4944)
169 13 1

7 (−22α3 − 1006α)

191 −13
√
2 + 23 1

7 (11α
3 + 216α)

191 −7
√
2 + 17 10α3 + 76α

193 −4
√
2 + 15 −43α3 − 632α

193 −18
√
2 + 29 1

7 (129α
3 + 2682α)

199 −9
√
2 + 19 1

7 (62α
2 − 1440)

199 −11
√
2 + 21 1

7 (142α
3 + 682α)
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H := HeckeCharacterGroup(N, [1 ,2]);
chi := H.1;

// controls how many coefficients we compute
BOUND := 200;

// set up the relevant space of Hilbert modular forms
M := GradedRingOfHMFs(F, BOUND );
Mk := HMFSpace(M, N, k, chi);

// compute an basis of q-expansions spanning the space
// the basis will be over F’(chi) = F
Sk := CuspFormBasis(Mk);

// the dimension of the cusp space is 2
assert #Sk eq 2;

// diagonalize the Hecke action to produce an eigenbasis
eigs := Eigenbasis(Mk, Sk : P:=10);

6.2. Weight (1, 2) forms over Q(
√
2) and Q(

√
5). This project was motivated by a proposal ([Cal21])

for computing explicit examples of 4-folds of Mumford’s type by computing Hilbert modular forms that are
expected to be associated to them. These Hilbert modular forms are expected to be non-CM forms of weight
(1, 1, 2) and have coefficients satisfying certain rationality conditions. One also expects a similar geometric
origin for non-CM forms of weight (1, 2) with coefficients satisfying similar rationality conditions. While do
we not yet have any examples of non-CM forms, we report on some of our findings thusfar.

Given k, N, and χ, we can compute the space of CM forms Dk(N, χ) ⊆ Sk(N, χ) by searching through
the CM extensions of F with conductor dividing N and looking for Hecke characters with an infinity type
dependent on k and behavior at finite places determined by χ. Given such a Hecke character, one can
produce explicit formulas for the Fourier coefficients of the corresponding automorphically induced Hilbert
modular form. As such, we can verify whether a given form is CM or not by checking to see if it lands in
the CM space.

Theorem 6.1. The weight (1, 2) forms over F = Q(
√
2) and F = Q(

√
5) of Galois stable level N with

Nm(N) ≤ 1500 and quadratic nebentypus character are all CM forms.

It may seem odd to focus on Galois stable level. While there are indications that forms of Galois stable
level might relate more easily to geometry, the reason in our setting is practical. For such levels N, one
can check by a class field theory computation that unless N|(2), there will always exist Eisenstein series
g ∈ M1(N, ψ) which are nonvanishing at the cusp at infinity. While the Hecke stability method will work
with Eisenstein series of any weight, the bottleneck in the computation of (1, 2) forms is computing a basis
of q-expansions for a space of weight (1 + kg, 2 + kg), where kg is the weight of the Eisenstein series.
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